¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.33, no.4, 1990³â, pp.277-283
½Ã±ÝÄ¡¿¡¼­ ºÐ¸®ÇÑ ±¤°è 2 º¹ÇÕüÀÇ ºÒȰ¼ºÈ­¿Í ÀçȰ¼ºÈ­¿¡ ´ëÇÑ ¿¬±¸
( Studies on Inactivation and Reactivation of Isolated Photosystem II Complexes in Spinach )
ÀüÇö½Ä; µ¿ÀÇ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ »ý¹°Çаú;
 
ÃÊ ·Ï
Inactivation and reactivation of photosynthetic oxygen evolving complex were studied with isolated spinach (Spinacia oleraceda. L.) photosystem II particles by the activity of oxygen evolution and chlorophyll fluorescence. When the particles were treated with Tris and urea, the oxygen evolution was inactivated and three polypeptides having molecular weights of 33 kDa, 24 kDa and 18 kDa were simultaneously released. But in NaCl-treated particles, two polypeptides of 24 kDa and 18 kDa were removed from PS II particles. The oxygen evolution activities of Tris and urea-treated particles were not restored by adding cation ions (Mg2+, Mn2+ and Ca2+), but the NaCl-treated particles were restored by exogenously added Ca2+. The removal of these extrinsic polypeptides, especially 33 kDa, markedly showed the decrease of the variable fluorescence (Fv). These results are likely to be due to dissipate thermal energy by antenna of photosystem II complexes.
 
Ű¿öµå
 
Journal of Plant Biology / v.33, no.4, 1990³â, pp.277-283
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199011920115378)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿