¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.36, no.1, 1993³â, pp.1-8
Æ÷Çöó ÀÙÀýÆíÀÇ ºÎÁ¤¾Æ ºÐÈ­¿Í Polyamine ÇÔ·®ÀÇ ¿¬°ü¼º
( Correlations Between Polyamine and Adventitious Shoot Regeneration from Populus Leaf Segments )
±è¼ºÈ£; ¼­³²´ëÇб³ »ý¹°Çаú;
 
ÃÊ ·Ï
Polyamine contents and the activities of their main biosynthetic enzymes, arginine decarboxylase (ADC) and ornithine decarboxylase(ODC), were investigated in Populus leaf segments during adventitious shoot regeneration with the addition of 1 millimolar polyamine synthesis inhibitors. From the study of polyamine synthesis inhibitors, ODC was found to be the principal route of polyamine biosynthesis in adventitious shoot regeneration of Populus leaf segments. The ADC inhibitor difluoromethyl arginine(DFMA) and ODC inhibitor difluoromethyl ornithine(DFMO) strongly reduced the putrescine content. On the contarary, DCHA, an inhibitor of spermidine synthase, increased it. Spermidine content was decreased with the treatment of each polyamine synthesis inhibitor, but the inhibitory effect of DCHA was stronger than any other polyamine inhibitor. The decreased polyamine level by polyamine synthesis inhibitors was restored with the exogenously applied polyamine. Comparing the polyamine contents with the adventitious shoot regeneration rate, were observed a close correlation between spermidine content and adventitious shoot regeneration of Populus leaf segments.
 
Ű¿öµå
 
Journal of Plant Biology / v.36, no.1, 1993³â, pp.1-8
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199311920116317)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿