¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.25, no.3, 1982³â, pp.105-111
Àλï ÀÙÀÇ $CO_2$ °íÁ¤´É°ú ±¤È£Èí¿¡ °üÇÑ ¿¬±¸
( Studies on $CO_2$-Fixation Ability and Photorespiration in Ginseng Leaves )
ÀÌÀÎö; ¿¬¼¼´ëÇб³ À̰ú´ëÇÐ »ý¹°Çаú;
 
ÃÊ ·Ï
These studies were undertaken to elucidate the reasons for the low productivity of ginseng by comparing the rate of $CO_2$-fixation and photorespiration, variation in the amounts of intermediates and enzyme activities of glycolate oxidase and catalase in ginseng with those of potato. The ability of $CO_2$-fixation in ginseng was found to be one half of that of potato and there were significant differences between those two plants in the rate of $^{14}C$ incorporated into glutamate, aspartate, malate and 3-PGA, but little differences in P-glycolate, glycolate, serine and glycine. The ratio of photorespiration to dark respiration and the activities of glycolate oxidase and catalase in the two species were about same, but ginseng showed higher ratio in photorespiration to total $CO_2$-fixation than potato did. These results indicated that the low productivity of ginseng may resulted from the low $CO_2$-fixation ability and high rate of photorespiration.
 
Ű¿öµå
 
Journal of Plant Biology / v.25, no.3, 1982³â, pp.105-111
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO198211920113474)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿