¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.45, no.3, 2002³â, pp.154-160

( Nodular Somatic Embryogenesis and Frond Regeneration in Duck-weed, Lemna gibba G3 )
;; ;;
 
ÃÊ ·Ï
Duckweed (Lemna gibba) is a useful model system for elucidating plant development, but the techniques needed for regenerating fronds from calli are not yet well established. This study examined the effects of auxin, sucrose, and gel-ling agents on callus and frond formation in L. gibba G3. After three weeks of culturing on a solid medium, two types of calli were observed: watery, pale-green, and undifferentiated; or white, compact calli that were organized into nodules and which resembled somatic embryogenic calli. Homogeneous callus lines were produced through selective subculture. To induce nodular calli, auxin (2,4-D) was absolutely required, with an effective concentration of 5 to 20 $mu$M£» induction was found to be possible with up to a maximum concentration of 4.4%. The calli were then maintained on a medium with a reduced 2,4-D concentration (1 $mu$M), and were transferred every three weeks. Optimal callus induction and growth were obtained by using 3% sucrose with a combination of 0.15% Gelrite and 0.4% agar. Fronds, however, could be regenerated only on distilled water solidified with a combination of 0.4% agar and 0.15% Gelrite. On this medium, 87% of the callus explants regenerated into fronds after four weeks of culture. These new fronds were morphologically normal but small, approximately 15 to 20% of the size of stock fronds. Continued culture of these fronds in an SH medium produced normal duckweeds, and histological examination of the cultures revealed several distinct types of callus nodules. Nonetheless, because zygotic embryogenesis in L. gibba does not produce distinct bipolar structures, the developmental pathway of frond regeneration from these nodular cultures remains unknown.
 
Ű¿öµå
Lemna gibba G3;regenerated fronds;somatic embryogenic callus;zygotic embryogenesis;
 
Journal of Plant Biology / v.45, no.3, 2002³â, pp.154-160
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200211921373904)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿