¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹È¯°æ»ý¹°ÇÐȸ / v.23, no.3, 2005³â, pp.221-227

( The Effects of Light and $CO_2$ on the Changes of Electrical Potential Difference in Isolated Epidermis and Intact Leaves of Commeina communis L )
; ;
 
ÃÊ ·Ï
The effects of light and $CO_2$ on the electrophysiological characteristics of guard cells in the intact leaf and isolated epidermis have been investigated. Fast hyperpolarization of guard cell apoplastic PD in the intact leaf was recorded reaching up to around 7 mV and 20 mV in response to light and $CO_2$. Whenever the experiments were attempted with isolated epidermis, there was no response to light and $CO_2$. In order to determine the influence of the mesophyll cells, the apoplastic PD of guard cells in isolated epidermis was measured in the presence of the mesophyll supernatant or the control medium. The apoplastic PD in isolated epidermis was hyperpolarized to -7mV, changing from -22mV to -29mV at 40 min. But, when isolated epidermis was incubated with the supernatant from mesophyll cells incubated in the light, the apoplastic PD in isolated epidermis was hyperpolarized to -19 mV, changing from -22 mV to -40.5 mV. $CO_2$ also caused a change of 0.1 to 0.3 pH unit in the intact leaf. However, this change was absent in isolated epidermis. A vibrating probe was used to detect the change in electrical currents at the surface of excised intact leaves and isolated epidermis. The reading of excised intact leaves in the dark was $0.5muA;cm^{-2},$ remaining steady until illuminated. Light increased the current on the surface of excised leaves to about $0.8muA;cm^{-2},$. However, light had no effect in the current on the surface of isolated epidermis. Apoplastic pH changes across the stomatal complex in response to light and dark were measured both in the intact leaves and isolated epidermis over the same time period using pH micro-electrodes. The guard cell wall of intact leaf was acidified to 2.5 pH unit, falling from pH 7.5 to pH 5.0 in the first 10 min. in the light. At the same time the guard cell wall pH of isolated epidermis fell from pH 7.5 to pH 7.0 at 10 min. The guard cell wall pH of isolated epidermis incubated in the mesophyll supernatant fell from pH 7.6 to pH 6.7 at 10 min. Likewise, It could be imagined that an electrical signal, chemicals and hormones propagated from the mesophyll in response to light and $CO_2$ could control a fast stomatal response.
 
Ű¿öµå
apoplastic potential difference;apoplastic pH;mesophyll cells;stomata;
 
ȯ°æ»ý¹° / v.23, no.3, 2005³â, pp.221-227
Çѱ¹È¯°æ»ý¹°ÇÐȸ
ISSN : 1226-9999
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200504840632136)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿