¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹È¯°æ»ý¹°ÇÐȸ / v.24, no.1, 2006³â, pp.46-52
ÀÌ¿ÂÈ­ ¹æ»ç¼± ¹× ¿°È­¼öÀº(II)¿¡ ÀÇÇÑ ÀڱðæºÎ¾Ï ¼¼Æ÷ÀÇ DNA ¼Õ»ó Æò°¡
( Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells )
¿ìÇöÁ¤;±èÁöÇâ;¾ÈÅä´Ï³ª üºÒ½ºÄ«¹Ù½Ç·¹ÇÁ½ºÄ«;±èÁø±Ô; Çѱ¹¿øÀڷ¿¬±¸¼Ò Á¤À¾ºÐ¼Ò ¹æ»ç¼±¿¬±¸¿ø;Çѱ¹¿øÀڷ¿¬±¸¼Ò Á¤À¾ºÐ¼Ò ¹æ»ç¼±¿¬±¸¿ø;Æú¶õµåÇÙ¹°¸®¿¬±¸¼Ò;Çѱ¹¿øÀڷ¿¬±¸¼Ò Á¤À¾ºÐ¼Ò ¹æ»ç¼±¿¬±¸¿ø;
 
ÃÊ ·Ï
¼¼Æ÷¿¡ ¹ÌÄ¡´Â ¿°È­¼öÀº(II)°ú ÀÌ¿ÂÈ­ ¹æ»ç¼±ÀÇ ¿µÇâ°ú ¼öÀº ó¸® Àü ÈÄ ¹æ»ç¼± Á¶»ç ½Ã ±× »óÈ£ ÀÛ¿ë¿¡ °üÇØ ¾Ë¾Æº¸°íÀÚ º» ¿¬±¸¸¦ ¼öÇàÇÏ¿´´Ù. ¿°È­¼öÀº(II)ÀÇ µ¶¼ºÁ¤µµ¸¦ ¾Ë¾Æº¸±â À§ÇÏ¿© »ç¶÷ÀÇ ÀÚ±Ã¾Ï ¼¼Æ÷¿¡ ³óµµº°·Î ¿°È­¼öÀº(II)À» ó¸®ÇÏ¿´´Ù. ¼¼Æ÷ÀÇ »ýÁ¸À²Àº 3°¡Áö ³óµµ(1,0. 1,0. $0.01;{mu}M$)¸ðµÎ¿¡¼­ À¯ÀÇÇÏ°Ô °¨¼ÒÇÏ¿´À¸¸ç ÀÌ¹Ì $0.1;{mu}M$¿¡¼­ ¾à 73%ÀÇ »ýÁ¸À²ÀÌ °¨¼ÒÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ¿°È­¼öÀº(II)°ú ¹æ»ç¼±ÀÇ ´Üµ¶Ã³¸® ½Ã DNAÀÇ ¼Õ»ó Á¤µµ¿¡ ºñÇØ º¹ÇÕó¸® ½ÃÀÇ DNA¼Õ»ó Á¤µµ°¡ $2sim4$¹è Á¤µµ È®¿¬È÷ ³ô¾ÆÁüÀ» º¼ ¼ö ÀÖ¾ú´Ù. ƯÈ÷ ¹æ»ç¼± ÈÄ ¼öÀº 󸮱ºÀº DNA¼Õ»óÀÇ Á¤µµ°¡ ´Ù¸¥ 󸮱º¿¡ ºñÇÏ¿© ³ô°Ô ³ªÅ¸³µ´Âµ¥ ÀÌ´Â ÀÌ¹Ì ±âÁ¸ÀÇ º¸¹®¿¡¼­ ¹àÇôÁø ¹Ù¿Í °°ÀÌ ¼öÀºÀÇ DNA¼öº¹¿¡ °ü·ÃµÇ¾î ÀÖ´Â Fpg protein¿¡ ¹ÌÄ¡´Â ¿µÇâ ¶§¹®À¸·Î »ç·áµÈ´Ù. ÀÌ¹Ì ¹æ»ç¼±¿¡ ÀÇÇØ »êÈ­Àû ¼Õ»óÀ» ÀÔÀº DNAÀÇ ¼öº¹ ±âÀÛÀ» ¼öÀºÀÌ ¹æÇØÇÏ¿© Á» ´õ ³ôÀº ¼Õ»óÀ» °¡Á®¿À´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.
The mercury is among the most highly bioconcentrated toxic trace metals. Many national and international agencies and organisations have targeted mercury for the possible emission control. The mercury toxicity depends on its chemical form, among which alkylmercury compounds are the most toxic. A human cervix uterus cancer cell line HeLa cells was employed to investigate the effect of the toxic heavy metal mercury (Hg) and ionizing radiation. In the in vitro comet assays for the genotoxicity in the HeLa cells, the group of Hg treatment after irradiation showed higher DNA breakage than the other groups. The tail extent moment and olive tail moment of the control group were $4.88{pm}1.00;and;3.50{pm}0.52$ while the values of the only Hg treatment group were $26.90{pm}2.67;and;13.16{pm}1.82$, respectively. The tail extent moment and olive tail moment of the only 0.001, 0.005, 0.01 Hg group were $12.24{pm}1.82,;8.20{pm}2.15,;20.30{pm}1.30,;12.26{pm}0.52,;40.65{pm}2.94;and ;20.38{pm}1.49$, respectively. In the case of Hg treatment after irradiation, the tail extent moment and olive tail moment of the 0.001, 0.005, 0.01 Hg group were $56.50{pm}3.93,;32.69{pm}2.48,;62.03{pm}5.14,;31.56{pm}1.97,;72.73{pm}3.70;and ;39.44{pm}3.23$, respectively. The results showed that Hg induced DNA single-strand breaks or alkali labile sites as assessed by the Comet assay. It is in good agreement with the reported results. The mercury inhibits the repair of DNA. The bacterial formamidopyrimidine-DNA glycosylase (Epg protein) recognizes and removes some oxidative DNA base modifications. Enzyme inactivation by Hg (II) may therefore be due either to interactions with rysteine residues outside the metal binding domain or to very high-affinity binding of Hg (II) which readily removes Zn (II) from the zinc finger.
 
Ű¿öµå
mercury chloride (II);ionizing radiation;HeLa cell;comet assay;
 
ȯ°æ»ý¹° / v.24, no.1, 2006³â, pp.46-52
Çѱ¹È¯°æ»ý¹°ÇÐȸ
ISSN : 1226-9999
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200617033417316)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿