¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹È¯°æ»ýÅÂÇÐȸ / v.25, no.4, 2011³â, pp.590-600
±âÈĺ¯È­¿¡ µû¸¥ Çѹݵµ ³­¿Â´ë »ó·ÏȰ¿±¼öÀÇ ÀáÀç »ýÀ°Áö º¯È­ ¿¹Ãø
( Change Prediction for Potential Habitats of Warm-temperate Evergreen Broad-leaved Trees in Korea by Climate Change )
À±Á¾ÇÐ;Á߹̽¾ç;¹ÚÂùÈ£;À̺´À±;¿À°æÈñ; ±¹¸³»ý¹°ÀÚ¿ø°ü ½Ä¹°ÀÚ¿ø°ú;ÀϺ» »ê¸²ÃÑÇÕ¿¬±¸¼Ò ½Ä¹° »ýÅÂÇÐ ¿¬±¸½Ç;±¹¸³»ý¹°ÀÚ¿ø°ü ½Ä¹°ÀÚ¿ø°ú;±¹¸³»ý¹°ÀÚ¿ø°ü ½Ä¹°ÀÚ¿ø°ú;±¹¸³»ý¹°ÀÚ¿ø°ü ½Ä¹°ÀÚ¿ø°ú;
 
ÃÊ ·Ï
º» ¿¬±¸´Â ±âÈĺ¯È­¿¡ µû¸¥ Çѹݵµ ³­¿Â´ë »ó·ÏȰ¿±¼öÀÇ »ýÀ°Áö º¯È­¸¦ ¿¹ÃøÇϱâ À§ÇÏ¿© CT-modelÀ» ÀÌ¿ëÇÏ¿© ÇöÀç±âÈÄ(1961~1990)¿Í 3Á¾·ùÀÇ ¹Ì·¡±âÈÄ(2081~2100) ½Ã³ª¸®¿À¿¡¼­ÀÇ ÀáÀç »ýÀ°Áö¸¦ ¿¹ÃøÇÏ¿´´Ù. ¹ÝÀÀº¯¼ö·Î¼­ ³­¿Â´ë »ó·ÏȰ¿±¼öÀÇ ½ÇÁ¦ ºÐÆ÷¿¡¼­ ÃßÃâÇÑ À¯/¹«ÀÚ·á¿Í 4°¡Áö ±âÈĺ¯¼ö(¿Â·®Áö¼ö, ÃÖÇÑ¿ùÃÖÀú±â¿Â, µ¿°æ°­¼ö·®, Çϰ谭¼ö·®)¸¦ ¿¹Ãøº¯¼ö·Î »ç¿ëÇÏ¿´´Ù. ÇöÀç±âÈÄ¿¡¼­ ÀáÀç »ýÀ°Áö(PH)´Â 28,230$km^2$·Î ¿¹ÃøµÇ¾úÀ¸¸ç, 3Á¾·ù ¹Ì·¡±âÈÄ ½Ã³ª¸®¿À(CCCMA-A2, CSIRO-A2, HADCM3-A2)¿¡¼­´Â 77,140~89,285$km^2$·Î ¿¹ÃøµÇ¾ú´Ù. ÇöÀç±âÈÄ¿¡¼­ ÅäÁö ÀÌ¿ëÀ» °í·ÁÇÑ ÀáÀç »ýÀ°Áö(PHLU)´Â 8,274$km^2$·Î ¿¹ÃøµÇ¾úÀ¸¸ç, ÀáÀç »ýÀ°ÁöÀÇ 29.3%¸¦ Â÷ÁöÇÏ¿´´Ù. ¹Ì·¡±âÈÄ¿¡¼­ ÅäÁö ÀÌ¿ëÀ» °í·ÁÇÑ ÀáÀç »ýÀ°Áö´Â 35,177~45,170$km^2$·Î ¿¹ÃøµÇ¾úÀ¸¸ç, 26.9~36.9% Áõ°¡ÇÏ¿´´Ù. ±âÈĺ¯È­¿¡ µû¸¥ ³­¿Â´ë »ó·ÏȰ¿±¼öÀÇ ºÐÆ÷ È®´ë´Â ÅäÁö À̿뿡 Á¦ÇÑµÇ¾î »ýÀ°Áö ÆÄÆí ÇüÅ·ΠÁøÇàµÇ°í ÀÖ´Ù. ³­¿Â´ë »ó·ÏȰ¿±¼öÀÇ »ýÀ°Áö Áõ°¡´Â ³­¿Â´ë ³«¿±È°¿±¼ö¸²°úÀÇ °æÀïÀÌ ¿¹»óµÇ¸ç, ³­¿Â´ë »ó·ÏȰ¿±¼ö¸²´ëÀÇ È®´ë ¹× ºÏ»óÀ» ½Ã»çÇϰí ÀÖ´Ù.
The research was carried out for prediction of the potential habitats of warm-temperate evergreen broad-leaved trees under the current climate(1961~1990) and three climate change scenario(2081~2100) (CCCMA-A2, CSIRO-A2 and HADCM3-A2) using classification tree(CT) model. Presence/absence records of warm-temperate evergreen broad-leaved trees were extracted from actual distribution data as response variables, and four climatic variables (warmth index, WI; minimum temperature of the coldest month, TMC; summer precipitation, PRS; and winter precipitation, PRW) were used as predictor variables. Potential habitats(PH) was predicted 28,230$km^2$ under the current climate and 77,140~89,285$km^2$ under the three climate change scenarios. The PH masked by land use(PHLU) was predicted 8,274$km^2$ and the proportion of PHLU within PH was 29.3% under the current climate. The PH masked by land use(PHLU) was predicted 35,177~45,170$km^2$ and increased 26.9~36.9% under the three climate change scenarios. The expansion of warm-temperate evergreen broad-leaved trees by climate change progressed habitat fragmentation by restriction of land use. The habitats increase of warm-temperate evergreen broad-leaved trees had been expected competitive with warm-temperate deciduous broadleaf forest and suggested the expand and northward shift of warm-temperate evergreen broad-leaved forest zone.
 
Ű¿öµå
CT¸ðµ¨;ÅäÁö ÀÌ¿ë;»ýÀ°Áö ÆÄÆí;CLASSIFICATION TREE MODEL;LAND USE;HABITAT FRAGMENTATION;
 
Çѱ¹È¯°æ»ýÅÂÇÐȸÁö / v.25, no.4, 2011³â, pp.590-600
Çѱ¹È¯°æ»ýÅÂÇÐȸ
ISSN : 1229-3857
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201134036351115)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿