|
|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.30, no.4, 1997³â, pp.347-355
|
À¯ÀüÀÚ ¾Ë°í¸®µëÀ» ÀÌ¿ëÇÑ Àú·ùÇÔ¼ö¸ðÇüÀÇ ¸Å°³º¯¼ö ÃßÁ¤¿¡ °üÇÑ ¿¬±¸
( A Study on Parameters Estimation of Storage Function Model Using the Genetic Algorithms ) |
| ¹ÚºÀÁø;Â÷Çü¼±;±èÁÖȯ; Çѱ¹¼öÀÚ¿ø°ø»ç Ư¼ö»ç¾÷º»ºÎ ±¼Æ÷õ°Ç¼³»ç¹«¼ÒÇѱ¹¼öÀÚ¿ø°ø»ç ³«µ¿°»ç¾÷º»ºÎ °Ç¼³Ã³, Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¼Ò;;;
|
|
|
 |
|
| |
| ÃÊ ·Ï |
| º» ¿¬±¸¿¡¼´Â ÀÚ¿¬°èÀÇ ÀûÀÀ ¹× µµÅ¿¡ ÀÇÇÑ DarwinÀÇ ÁøÈ°úÁ¤À» ¼öÇÐÀûÀ¸·Î ü°èȽÃŲ À¯ÀüÀÚ ¾Ë°í¸®µë(genetic algorithm)À» ´Ù¸ñÀû´ïÀÇ È«¼öÃßÀû¸ðÇüÀ¸·Î »ç¿ëµÇ°í ÀÖ´Â Àú·ùÇÔ¼ö¹ýÀÇ ¸Å°³º¯¼ö ÃßÁ¤¿¡ Àû¿ëÇÏ¿´´Ù. À¯ÀüÀÚ ¾Ë°í¸®µëÀº »ý¸íüÀÇ ÀÚ¿¬µµÅ ¿ø¸®¸¦ ¼öÇÐÀûÀÎ ÇнÀ¿µ¿ªÀ¸·Î Àû¿ëÇÑ Å½»ö ¾Ë°í¸®µëÀÇ ÀÏÁ¾À¸·Î ¸Å°³º¯¼öÀÇ ÃßÁ¤Àº °³Ã¼À¯Àü°ú ÀûÀÚ»ýÁ¸¹ýÄ¢À» ÅëÇØ ¼³Á¤µÈ ¸ðÇüÀÇ ¼º´ÉÀ» °³¼±½ÃÄÑ ³ª°¨À¸·Î½á ÃÖÀû°ª¿¡ µµ´ÞÇÏ°Ô µÈ´Ù. ¼ö¹®¼øÈ¯°èÀÇ º¹ÀâÇÑ °úÁ¤À» °³³äÀûÀ¸·Î ¸ðÇüÈÇÑ Àú·ùÇÔ¼ö¸ðÇü¿¡ ´ëÇÑ À¯ÀüÀÚ ¾Ë°í¸®µëÀÇ Àû¿ë¼ºÀ» Æò°¡Çϱâ À§ÇÏ¿© ´ëû´ïÀÇ È«¼ö±â·ÏÀ» ¼±Á¤ÇÏ¿© ¸Å°³º¯¼ö¸¦ Á¶Á¤ÇÏ°í °ËÁõÀ» À§ÇÏ¿© »ç¿ëÇÏ¿´´Ù. ¿©±â¼, °¢ È«¼ö»ç»óÀº ±âÁ¸ÀÇ °æÇè°ø½Ä¿¡ ÀÇÇØ »êÁ¤µÈ ¸Å°³º¯¼ö°ªÀ¸·Î ¸ðÀÇÇÏ¿´°í À¯ÀüÀÚ ¾Ë°í¸®µë¿¡ ÀÇÇÑ ¸Å°³º¯¼öÀÇ º¸Á¤Àº 50¼¼´ë·Î ÇÑÁ¤ÇÏ¿© 3ȸ¾¿ ½Ç½ÃÇÏ¿© ºñ±³¡¤ºÐ¼®ÇÏ¿´´Ù. ±× °á°ú À¯ÀüÀÚ¾Ë°í¸®µëÀ» Àû¿ëÇßÀ» ¶§¿¡ º¸Á¤Àü°ú ºñ±³ÇÏ¿© ÷µÎÈ«¼ö·® ¹× ÷µÎÈ«¼ö·®ÀÇ µµ´Þ½Ã°£ µî ¸ðµç ¸é¿¡¼ Çâ»óµÇ¾úÀ¸¸ç ¹Î°¨µµ ºÐ¼®°á°ú¿¡¼´Â ¸Å°³º¯¼ö Rsa, f1ÀÇ ¹Î°¨µµ°¡ °¡Àå Å« °ÍÀ¸·Î ³ªÅ¸³µ´Ù. À̸¦ Åä´ë·Î ¼ö¹®°è¿¡¼ °¿ì-À¯Ãâ¸ðÇüÀÎ Àú·ùÇÔ¼ö¹ýÀÇ ¸Å°³º¯¼ö »êÁ¤¿¡ ´ëÇÑ À¯ÀüÀÚ ¾Ë°í¸®µëÀÇ Àû¿ë¼ºÀ» ÀÔÁõÇÏ¿´À¸¸ç, Àú·ùÇÔ¼ö¸ðÇüÀÇ Àû¿ë½Ã ¸Å°³º¯¼ö »êÁ¤À» À§ÇÏ¿© »ç¿ëµÇ°í ÀÖ´Â °æÇè°ø½Ä°ú ºñ±³¡¤°ËÅäÇÔÀ¸·Î½á È«¼öÁ¶Àý¾÷¹«¿¡ °³¼±¿¡ Ȱ¿ëÇϰíÀÚ ÇÏ¿´´Ù. |
|
| In this study, the applicability of genetic algorithms into the parameter estimation of storage function method for flood routing model is investigated. Genetic algorithm is mathematically established theory based on the process of Darwinian natural selection and survival of fittest. It can be represented as a kind of search algorithms for optima point in solution space and make a reach on optimal solutions through performance improvement of assumed model by applying the natural selection of life as mechanical learning province. Flood events recorded in the Daechung dam are selected and used for the parameter estimation and verification of the proposed parameter estimation method by the split sample method. The results are analyzed that the performance of the model are improved including peak discharge and time to peak and shown that the parameter Rsa, and f1 are most sensitive to storage function model. Based on the analysis for estimated parameters and the comparison with the results from experimental equations, the applicability of genetic algorithm is verified and the improvements of those equations will be used for the augmentation of flood control efficiency. |
| |
| Ű¿öµå |
|
| |
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.30, no.4, 1997³â, pp.347-355
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199711920100312)
¾ð¾î : Çѱ¹¾î |
|
| ³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|
|