¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.31, no.1, 1998³â, pp.13-25
½Å°æÈ¸·Î¸ÁÀ» ÀÌ¿ëÇÑ À¯Ãâ¼ö¹®°î¼± ¸ðÀÇ¿¡ °üÇÑ ¿¬±¸
( A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network )
¾È°æ¼ö;±èÁÖȯ; ÀÎõ´ëÇб³ Åä¸ñ°øÇаú;Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¼Ò;
 
ÃÊ ·Ï
½Å°æÈ¸·Î¸ÁÀº ¾î¶² »ç»ó¿¡ ´ëÇÑ Àΰú°ü°è¸¦ ¿¬»ó±â¾ï´É·ÂÀ» ÅëÇÏ¿© ÀνÄÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» °¡Áö°í ÀÖÀ» »Ó ¾Æ´Ï¶ó ºñ¼±ÇüÇö»ó¿¡ ´ëÇÑ ÀûÀÀ´É·ÂÀÌ ¶Ù¾î³ª ¼ö¹®°èÀÇ °­¿ì-À¯Ãâ Çö»ó¿¡ ´ëÇÑ Àû¿ë°¡´É¼ºÀº ¸¹À¸³ª À̸¦ ¼ö¹®ÇÐÀûÀ¸·Î °ËÁõÇϴµ¥´Â ¾ÆÁ÷ °ËÅä´Ü°è¶ó ÇÒ ¼ö ÀÖÀ¸¸ç Àû¿ë¿¡ µû¸¥ ¹æ¹ý·Ð¿¡ ´ëÇÑ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù ÇÒ ¼öÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â ÇÏõÀ¯¿ª¿¡¼­ È£¿ìÀÇ ¹ß»ý¿¡ µû¸¥ ÇÏõÀÇ È«¼öÀ¯Ãâ¼ö¹®°î¼±À» ¸ðÀÇÇϱâ À§ÇÑ ºí·¢¹Ú½º¸ðÇüÀ¸·Î¼­ ½Å°æÈ¸·Î¸ÁÀÌ·ÐÀÇ Àû¿ë¿¡ µû¸¥ ¹®Á¦¸¦ ¼ö¹®ÇÐÀûÀ¸·Î ±Ô¸íÇϰíÀÚ ÇÏ¿´´Ù. À̸¦ À§ÇÑ ¹æ¹ýÀ¸·Î¼­ È«¼ö¹ß»ýÀÇ Á÷Á¢ÀûÀÎ ¿øÀÎÀÎ °­¿ìÆÐÅÏÀ» ½Å°æÈ¸·Î¸ÁÀÇ ÀÔ·ÂÆÐÅÏÀ¸·ÎÇϰí ÀÌ¿¡ µû¸¥ Ãâ·ÂÆÐÅÏÀ» À¯Ãâ¼ö¹®°î¼±À̶ó´Â °¡Á¤ÇÏ¿¡ ½Å°æÈ¸·Î¸Á¸ðÇüÀ» ±¸¼ºÇÏ°í Æòâ°­À¯¿ª¿¡¼­ ¹ß»ýµÈ °ú°Å È«¼ö±â·ÏÀڷḦ ÀÌ¿ëÇÏ¿© ±× °á°ú¸¦ Á¦½ÃÇÏ¿´´Ù. º» ¿¬±¸°á°ú¿¡ ÀÇÇÏ¸é ½Å°æÈ¸·Î¸ÁÀÇ ÇнÀÀÌ ¼öÇàµÇ´Â µ¿¾È ¾î¶°ÇÑ ÇüÅÂ·Îµç ¼ö¹®ÇÐÀû °³³äÀ» Åä´ë·Î ±¸¼ºµÈ ¸ðÇüÀÇ ±¸Á¶¿¡ Àß ÀûÀÀµÇ°í ÀÖÀ½À» ¾Ë¼ö ÀÖ¾ú´Ù. ÀÌ °á°ú¸¦ Åä´ë·Î Áö±Ý±îÁö º¹ÀâÇÑ °úÁ¤À» °ÅÃľßÇÏ´Â °­¿ì-À¯Ãâ ¸ðÇüÈ­ °úÁ¤¿¡¼­ ¹ß»ýµÇ´Â ¹®Á¦Á¡µéÀ» È¿À²ÀûÀ¸·Î ÇØ°áÇÒ ¼ö ÀÖ´Â Á¢±Ù¹æ¹ýÀ¸·Î¼­ Ȱ¿ëµÉ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÈ´Ù. Çٽɿë¾î: ÆÐÅÏÀνÄ, ½Å°æÈ¸·Î¸Á, °­¿ì-À¯Ãâ¸ðÇü, ¿ÀÂ÷¿ªÀüÆÄ ¾Ë°í¸®Áò,À¯Ãâ¼ö¹®°î¼±
It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources. Keywords: pattern recognition, artificial neural network, rainfall-runoff model. error back propagation algorithm, runoff hydrograph
 
Ű¿öµå
ÆÐÅÏÀνÄ;½Å°æÈ¸·Î¸Á;°­¿ì-À¯Ãâ¸ðÇü;¿ÀÂ÷¿ªÀüÆÄ ¾Ë°í¸®Áò;À¯Ãâ¼ö¹®°î¼±;pattern recognition;artificial neural network;rainfall-runoff model;error back propagation algorithm;runoff hydrograph;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.31, no.1, 1998³â, pp.13-25
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199811920100739)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿