¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.31, no.3, 1998³â, pp.279-290
Ãæ°ÝÆÄ ¸ðÀǸ¦ À§ÇÑ ÀÌÂ÷¿ø À¯ÇÑüÀû ºñÁ¤»ó È帧 ¸ðÇü
( Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks )
À̱漺;À̼ºÅÂ; ¼­¿ï´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°ú;¼­¿ï´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
Ãæ°ÝÆÄÀÇ ³ôÀ̳ª ¼Óµµ´Â È«¼öÁ¦¾îÁ¶ÀÛÀ̳ª ¼ö·Îº®°ú ºü¸¥ À¯¼ÓÀ» °¡Áö´Â ÇÏõ¿¡¼­ ±³·®ÀÇ ¼³°è¿¡ Áß¿äÇÑ ÀÚ·á°¡ µÈ´Ù. µû¶ó¼­ ±¤¹üÀ§ÇÑ Á¶°Ç¿¡¼­ È帧ÀÇ ºÒ¿¬¼Ó¸éÀ» ¸ðÀÇÇÒ ¼ö ÀÖ´Â ¼öÄ¡¸ðÇüÀÌ ¿ä±¸µÈ´Ù. º» ¿¬±¸¿¡¼­´Â õ¼ö¹æÁ¤½ÄÀ» Áö¹è¹æÁ¤½ÄÀ¸·Î ÇÑ Godunov Çü À¯ÇÑüÀû¹ý ¸ðÇüÀ» °³¹ßÇÏ¿´´Ù. Riemann ÇØ¹ýÀ¸·Î Roe(1981)ÀÇ ÇØ¹ýÀÌ »ç¿ëµÈ´Ù. ÀÌ ¸ðÇüÀº º» ¿¬±¸¿¡¼­ ºñ±¸Á¶Àû°ÝÀÚ(unstructured grids)¸¦ »ç¿ëÇϱâ À§ÇØ °³¹ßµÈ ¼öÁ¤ MUSCLÀ» µµÀÔÇÏ¿´´Ù. ¾çÇØ¹ýÀ» ¾²´Â º» ¸ðÇüÀº ½Ã°£°£°ÝÀ» ÀÚµ¿ °è»êÇÑ´Ù. °³¹ßµÈ ¸ðÇüÀ» ÀüÇüÀûÀÎ ÀÌÂ÷¿ø ´ï ºØ±«ÆÄ ¸ðÀÇ, ¼ö¸®¸ðÇü ½ÇÇè¿¡¼­ ÇàÇØÁø ºØ±«ÆÄ ¸ðÀÇ, ±×¸®°í ¼ö¸®¸ðÇü ½ÇÇè¿¡¼­ ÇàÇØÁø ¸¸°î¼ö·Î¿¡¼­ÀÇ Á¤»ó»óÅ ¸ðÀÇ µî¿¡ Àû¿ëÇÏ¿´´Ù. ±× Àû¿ë°á°ú¿¡ ÀÇÇØ ´ÙÀ½°ú °°ÀÌ °á·ÐÀ» ³»¾ú´Ù. 1)À¯ÇÑüÀû¹ýÀº, Ãæ°ÝÆÄ ¸ðÀǸ¦ À§ÇÑ ¼öÄ¡ÇØ¼® ±â¹ýÀÎ Godunov Çü ¹æ¹ý°ú Àß °áÇÕµÉ ¼ö Àֱ⠶§¹®¿¡ Ãæ°ÝÆÄ¸¦ ¸ðÀÇÇϱ⿡ Àû´çÇÑ ¹æ¹ýÀÌ´Ù. 2)¼öÁ¤ MUSCL°ú °áÇÕµÈ À¯ÇÑüÀû¹ý ¸ðÇüÀÌ Ãæ°ÝÆÄ¸¦ Àß Æ÷ÂøÇÔÀ¸·Î½á ¼öÁ¤ MUSCLÀÇ Àû¿ë¼ºÀÌ ÀÔÁõµÇ¾ú´Ù. Çٽɿë¾î : Ãæ°ÝÆÄ, õ¼ö¹æÁ¤½Ä, GodunovÇü ¹æ¹ý, À¯ÇÑüÀû¹ý, ¼öÁ¤ MUSCL, ºñ±¸Á¶Àû°ÝÀÚ
The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid. Keywords : shock wave, shallow water equation, Godunov-type scheme, finite volume method, modified MUSCL, unstructured girds.
 
Ű¿öµå
Ãæ°ÝÆÄ;õ¼ö¹æÁ¤½Ä;GodunovÇü ¹æ¹ý;À¯ÇÑüÀû¹ý;¼öÁ¤ MUSCL;ºñ±¸Á¶Àû°ÝÀÚ;shock wave;shallow water equation;Godunov-type scheme;finite volume method;modified MUSCL;unstructured grids;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.31, no.3, 1998³â, pp.279-290
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199811920100976)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿