¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.31, no.3, 1998³â, pp.317-326
Wavelet TransformÀ» ÀÌ¿ëÇÑ ¹°¼ö¿ä·®ÀÇ Æ¯¼ººÐ¼® ¹× ´Ù¿ø ARMA¸ðÇüÀ» ÅëÇÑ ¹°¼ö¿ä·®¿¹Ãø
( Water Supply forecast Using Multiple ARMA Model Based on the Analysis of Water Consumption Mode with Wavelet Transform. )
Á¶¿ëÁØ;±èÁ¾¹®; ¼­¿ï½Ã¸³´ë Åä¸ñ°øÇаú;¼­¿ï½Ã »ó¼öµµ »ç¾÷º»ºÎ;
 
ÃÊ ·Ï
½Ã°è¿­ÀÚ·áÀÇ ºÐÇØ´É·ÂÀÌ ¶Ù¾î³­ wavelet º¯È¯À» »ç¿ëÇÏ¿© ¹°¼ÒºñƯ¼ºÀ» ºÐ¼®ÇÏ¿´´Ù. Wavelet º¯È¯ÀÇ ±âÀúÇÔ¼ö·Î´Â ¹°¼ö¿ä·®ÀÇ °æ¿ì Coiflets5 ÇÔ¼ö, ±â¿ÂÃøÁ¤Ä¡ÀÇ °æ¿ì Coiflets3 ÇÔ¼ö¸¦ »ç¿ëÇÏ¿´À¸¸ç ÇØ¼®°á°ú 212 scale¿¡¼­ ¸ñÇ¥µÈ Àå±â°£¿¡ °ÉÄ£ º¯È­ÃßÀÌ´Â hyperbolic tangent ÇÔ¼öÀÇ ÇüÅ·ΠÀü±â°£¿¡ °Éó ²ÙÁØÇÑ Áõ°¡¼¼¸¦ º¸¿´´Ù. ¶ÇÇÑ Àý±âȤÀº °æ±âÁÖ±â¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖÀ» °ÍÀ¸·Î »ý°¢µÇ´Â Ãß°¡¼ö¿ä°¡ 6¿ù°ú 12¿ù¸»À» Á¤Á¡À¸·Î ¹ß»ýÇÏ¿´À¸¸ç ÀÌ Ãß°¡ ¼ö¿ä·®Àº ÇÏÀý±âÀÇ °æ¿ì $1,700; extrm{cm}^3/hr$, µ¿Àý±âÀÇ °æ¿ì $500; extrm{cm}^3/hr$ Á¤µµÀÎ °ÍÀ¸·Î °üÃøµÇ¾ú´Ù. Á¤¼öÀå »ý»ê·® ½Ã°è¿­ÀÚ·á¿¡ ³»ÀçÇÑ Áֱ⼺ºÐÀº ÁֱⰡ °¢°¢ 3.13day, 33.33 hr, 23.98hr¿Í 12hrÀÎ °ÍÀ¸·Î ±Ô¸íµÇ¾ú´Ù. ÁøÆøÀº ÁֱⰡ 23,98hrÀÎ ¼ººÐÀÌ °¡Àå Å« °ÍÀ¸·Î ¹àÇôÁ³À¸¸ç 2i[i = 1,2,¡¦12] scale¿¡¼­ ¸ñµµµÈ ´ÜÁֱ⼺ºÐµéÀº Gaussian PDF¸¦ µû¸£´Â °ÍÀÌ È®ÀεǾù´Ù. ÀÜÂ÷¼ººÐÀÇ »óÈ£µ¶¸³¼º, ÀÚ»öÆÄ¿©ºÎ¿Í FPEÀÇ ÃÖ¼ÒÈ­¸¦ ±âÁØÀ¸·Î ÇÒ °æ¿ì ¹°¼ö¿ä·®ÀÇ ÃÖÀû¿¹Ãø¸ðÇüÀ¸·Î´Â ±â¿ÂÀ» ÀÔ·ÂÀÚ·á·ÎÇÑ ´Ù¿ø AR[32, 16, 23]°ú ´Ù¿ø ARM [20, 16, 10, 23]ÀÎ °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
Water consumption characteristics on the northern part of Seoul were analyzed using wavelet transform with a base function of Coiflets 5. It turns out that long term evolution mode detected at 212 scale in 1995 was in a shape of hyperbolic tangent over the entire period due to the development of Sanggae resident site. Furthermore, there was seasonal water demand having something to do with economic cycle which reached its peak at the ends of June and December. The amount of this additional consumption was about $1,700; extrm{cm}^3/hr$ on June and $500; extrm{cm}^3/hr$ on December. It was also shown that the periods of energy containing sinusoidal component were 3.13 day, 33.33 hr, 23.98 hr and 12 hr, respectively, and the amplitude of 23.98 hr component was the most humongous. The components of relatively short frequency detected at $2^i$[i = 1,2,¡¦12] scale were following Gaussian PDF. The most reliable predictive models are multiple AR[32,16,23] and ARMA[20, 16, 10, 23] which the input of temperature from the view point of minimized predictive error, mutual independence or residuals and the availableness of reliable meteorological data. The predicted values of water supply were quite consistent with the measured data which cast a possibility of the deployment of the predictive model developed in this study for the optimal management of water supply facilities.
 
Ű¿öµå
´Ù¿ø ARMA;ºñÁ¤»ó ÁøÈ­ °æÇâ;wavelet º¯È¯;ARIMA;multiple ARMA;nonstationary evolution model;wavelet transforamtion;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.31, no.3, 1998³â, pp.317-326
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199811920101016)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿