¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.31, no.6, 1998³â, pp.769-777
BDS Åë°è: ¼ö¹®ÀÚ·á¿¡ÀÇ ÀÀ¿ë
( BDS Statistic: Applications to Hydrologic Data )
±èÇü¼ö;°­µÎ¼±;±èÁ¾¿ì;±èÁßÈÆ; ¼±¹®´ëÇб³ °Ç¼³°øÇкÎ;°í·Á´ëÇб³ Åä¸ñȯ°æ°øÇаú;°í·Á´ëÇб³ Åä¸ñȯ°æ°øÇаú;°í·Á´ëÇб³ Åä¸ñȯ°æ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â ´Ù¾çÇÑ Æ¯¼ºÀ» °¡Áö´Â ½Ã°è¿­ ÀÚ·áµéÀ» ºÐ¼®ÇÏ¿© ÀÚ·áÀÇ ºñ¼±Çü¼º ¿©ºÎ¸¦ ÆÇ´ÜÇÏ¿´´Ù. ½Ã°è¿­ ÀÚ·áÀÇ ¹«ÀÛÀ§¼ºÀ» ºÐ¼®ÇÏ¸é ½Ã½ºÅÛÀÇ ºñ¼±Çü ±¸Á¶¸¦ ¾Ë¾Æ³¾ ¼ö ÀÖ´Ù. ¹«ÀÛÀ§¼ºÀ» Á¶»çÇÏ´Â Åë°è±â¹ýÀ¸·Î´Â ÀüÅëÀûÀÎ ºñ¸ð¼ö Åë°è±â¹ý°ú »õ·Î¿î Åë°è±â¹ýÀÎ BDS Åë°è¸¦ »ç¿ëÇÏ¿´À¸¸ç, ±×µéÀÇ ÇØ¼®°á°ú¸¦ ºñ±³ÇÏ¿´´Ù. BDS Åë°è´Â Ä«¿À½º ºÐ¼®À» À§ÇØ ÀÌ¿ëµÇ´Â »ó°üÀûºÐÀÇ Åë°èÇÐÀû Ư¼ºÀ» ¹ÙÅÁÀ¸·Î ÇÑ °ËÁ¤¹æ¹ýÀ¸·Î¼­ ¹«ÀÛÀ§¼º°ú ºñ¼±Çü µ¿¿ªÇÐ ½Ã½ºÅÛÀ» ±¸ºÐÇϴµ¥ Ź¿ùÇÑ ´É·ÂÀÌ ÀÕ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ¿Ô´Ù. ÀÌ¹Ì ÀÚ·áÀÇ Æ¯¼ºÀÌ ¾Ë·ÁÁø ¼±Çü, ºñ¼±Çü ½Ã½ºÅÛ¿¡ BDS Åë°è¸¦ Àû¿ëÇÑ °á°ú, ºñ¸ð¼ö Åë°è±â¹ý¿¡ ºñÇØ ´õ¿í Á¤È®ÇÑ ÇØ¼®°á°ú¸¦ ³ªÅ¸³»¾ú´Ù. ½ÇÁ¦ ¼ö¹® ½Ã°è¿­ ÀڷḦ ÀÌ¿ëÇÏ¿© ¼±Çü Ãß°èÇÐÀû ¸ðÇüÀÎ ARMA ÇüÅÂÀÇ ¸ðÇüÀ» ±¸ÃàÇÑ ÈÄ, ÀÌ ¸ðÇüÀ¸·ÎºÎÅÍ °è»êµÈ ÀÜÄ¡¸¦ BDS Åë°è¸¦ »ç¿ëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. ºÐ¼®°á°ú, BDS Åë°è´Â ½Ã°è¿­ÀÚ·áÀÇ ¹«ÀÛÀ§¼º°ú Ä«¿À½º ½Ã½ºÅÛÀÇ ºñ¼±Çü¼ºÀ» ÆÇ´ÜÇÏ¿© ÁÙ »Ó¸¸¾Æ´Ï¶ó, Ãß°èÇÐÀû ¸ðÇüÀÇ ÀÜÂ÷ ºÐ¼®À» ÅëÇÑ ¸ðÇüÀÇ ÀûÇÕ¼º ÆÇ´Ü¿¡µµ À¯¿ëÇÑ ¹æ¹ýÀÓÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.
In this study, various time series are analyzed to check nonlinearities of the data. The nonlinearity of a system can be investigated by testing the randomness of the time series data. To test the randomness, four nonparametric test statistics and a new test statistic, called the BDS statistic are used and the results and the results are compared. The Brock, Dechert, and Scheinkman (BDS) statistic is originated from the statistical properties of the correlation integral which is used for searching for chaos and has been shown very effective in distinguishing nonlinear structures in dynamic systems from random structures. As a result of application to linear and nonlinear models which are well known, the BDS statistic is found to be more effective than nonparametric test statistics in identifying nonlinear structure in the time series. Hydrologic time series data are fitted to ARMA type models and the statistics are applied to the residuals. The results show that the BDS statistic can distinguish chaotic nonlinearity from randomness and that the BDS statistic can also be used for verifying the validity of the fitted model.
 
Ű¿öµå
BDS Åë°è;»ó°üÀûºÐ;Ä«¿À½º;ºñ¼±Çü¼º;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.31, no.6, 1998³â, pp.769-777
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199811920062841)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿