¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.31, no.6, 1998³â, pp.821-832
ANFIS¸¦ ÀÌ¿ëÇÑ »ó¼öµµ 1ÀÏ ±Þ¼ö·® ¿¹Ãø¿¡ °üÇÑ ¿¬±¸
( A Study of Prediction of Daily Water Supply Usion ANFIS )
À̰æÈÆ;¹®º´¼®;°­ÀÏȯ; Àü³²´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú;¼­³²´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú;Àü³²´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
º» ³í¹®¿¡¼­´Â »ó¼öµµ½Ã¼³À» È¿À²ÀûÀ¸·Î ¿î¿µÇÏ´Â µ¥ ÇÊ¿äÇÑ 1ÀÏ ±Þ¼ö·® ¼ö¿ä¸¦ ¿¹ÃøÇÏ´Â ¹æ½Ä¿¡ ´ëÇÏ¿© ÀΰøÁö´É(Artificial Inteligence)À̶ó ºÒ¸®´Â ÆÛÁö ´º·Ð(fuzzy neuron)À» ÀÌ¿ëÇÏ¿© ¿¬±¸ÇÏ¿´´Ù. ÆÛÁö´º·ÐÀ̶õ ÆÛÁöÁ¤º¸(fuzzy information)¸¦ ÀÔ·ÂÀ¸·Î ¹Þ¾ÆµéÀ̰í ó¸®ÇÏ´Â ÆÛÁö ½Å°æ¸ÁÀ» ÀÏÄ´ ¸»ÀÌ´Ù. º» ¿¬±¸¿¡¼­´Â ¼Ò¼ÓÇÔ¼ö¿Í ÆÛÁö±ÔÄ¢À» ½Å°æ¸ÁÀ¸·Î ÇнÀÇÏ´Â ±â´ÉÀÎ ÀûÀÀ½Ä ÇнÀ¹æ¹ýÀ» ÅëÇÏ¿© 1ÀÏ ±Þ¼ö·®À» ¿¹ÃøÇÏ¿´À¸¸ç ¿¬±¸´ë»ó Áö¿ªÀ¸·Î´Â ±¤ÁÖ±¤¿ª½Ã¸¦ ¼±Á¤ÇÏ¿´´Ù. ¶ÇÇÑ 1ÀÏ ±Þ¼ö·® ¿¹Ãø¿¡ À־ ÇÊ¿äÇÑ º¯¼ö ¼±ÅÃÀ» À§ÇØ ÀÔ·ÂÀڷḦ »ó°üºÐ¼®, ÀÚ±â»ó°ü, ºÎºÐÀÚ±â»ó°ü, ±³Â÷»ó°ü ºÐ¼® µîÀ» ÇÏ¿´À¸¸ç µ¿Á¤µÈ ÀԷº¯¼ö´Â ±Þ¼ö·®, Æò±Õ±â¿Â, ±Þ¼öÀα¸ÀÌ´Ù. ¸ÕÀú ±Þ¼ö·®, Æò±Õ±â¿Â, ±Þ¼öÀα¸·Î ¸ðµ¨À» ±¸¼ºÇÏ¿´°í, ÇÑÆíÀ¸·Ð ±â»óûÀÇ ±âÈÄ¿¹º¸ÀڷḦ ½Å·ÚÇÒ ¼ö ¾ø´Â °æ¿ì¿¡´Â ±Þ¼ö·®À» ¿¹ÃøÇÒ ¼ö ÀÖµµ·Ï ±Þ¼ö·® ÀڷḸÀ¸·Î ¸ðµ¨À» ±¸¼ºÇÏ¿© ±× À¯È¿¼ºÀ» °ËÁõÇÏ¿´´Ù. Á¦¾ÈµÈ ¸ðÇü½ÄÀº »ç°í µîÀÇ ÀÎÀ§ÀûÀÎ Á¶ÀÛ(´Ü¼ö µî)ÀÌ °¡ÇØÁö´Â ½Ã±â¸¦ Æ÷ÇÔÇÏ°íµµ ½ÇÃøÄ¡¿Í ¸ðÇüÀÇ ¿¹ÃøÄ¡¿ÍÀÇ ¿ÀÂ÷À²ÀÌ ÃÖ´ë 18.46%, Æò±Õ2.36% À̳»·Î ³ªÅ¸³ª, ¸ðÇüÀÇ °á°ú´Â »ó¼öµµ ½Ã¼³ÀÇ ¿î¿ë ¹× ±Þ¡¤¹è¼ö°ü¸ÁÀÇ ½Ç½Ã°£ Á¦¾î¿¡ ¸¹Àº µµ¿òÀ» ÁÖ¸®¶ó »ý°¢µÈ´Ù.
This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.
 
Ű¿öµå
ÀÏ ±Þ¼ö·®;ÆÛÁö ´º·Ð;ÆÛÁöÁ¤º¸;¼Ò¼ÓÇÔ¼ö;ÆÛÁö±ÔÄ¢;ÀûÀÀ½Ä ÇнÀ;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.31, no.6, 1998³â, pp.821-832
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199811920062877)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿