¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.2, 1999³â, pp.99-110
¸ð¸àÆ®¹ý¿¡ ÀÇÇÑ À̼۹æÁ¤½ÄÀÇ ¼öÄ¡ÇØ¼®
( Numerical Analysis for Advection Equation Based on the Method of Moments )
¹éÁßö;Á¶¿øÃ¶;ÇãÁØÇà; ¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³ »çȸȯ°æ¡¤°ÇÃà°øÇкÎ;;
 
ÃÊ ·Ï
¸ð¸àÆ®¹ýÀº Lagrangian º¡¹ýÀ¸·Î¼­ °ÝÀÚ¿ä¼Ò ³»¿¡¼­ÀÇ ³óµµÀÇ °ø°£ºÐÆ÷¿¡ ´ëÇÑ 0Â÷, 1Â÷, 2Â÷ ¸ð¸àÆ®¸¦ °í·ÁÇÑ°í °¢ ¸ð¸àÆ®ÀÇ º¸Á¸¼ºÀ» À¯ÁöÇϸ鼭 ³óµµºÐÆ÷ÀÇ À̼ÛÀ» °è»êÇÏ´Â ¹æ¹ýÀÌ´Ù. µû¶ó °¢ °ÝÀÚ¿ä¼Ò¿¡¼­ÀÇ 0Â÷ ¸ð¸àÆ®, Áï Æò±Õ³óµµ »Ó¸¸ ¾Æ´Ï¶ó 1Â÷ ¹× 2Â÷ ¸ð¸àÆ® °ªÀÇ ÇÕ¸®ÀûÀÎ Ãʱ⠼³Á¤ÀÌ ¿ä±¸µÈ´Ù. º» ¿¬±¸¿¡¼­´Â °¢ ¸ð¸àÆ®µéÀÇ ÃʱⰪ ¼³Á¤¹æ¹ýÀ» °ËÅäÇϰí, ±âÁ¸ ¸ð¸àÆ®¹ýÀÇ Couuant ¼ö¿¡ ´ëÇÑ Á¦¾àÁ¶°ÇÀ» ±Øº¹Çϱâ À§ÇÏ¿© ¸ð¸àÆ®¹ýÀ» °³¼±ÇÏ¿´´Ù. ¸ð¸àÆ®¹ý¿¡ ÀÇÇÑ ¸ðÀÇ °á°ú¸¦ À¯¿ëÇÑ Eulerian ¹× Lagrangian ±â¹ý¿¡ ÀÇÇÑ ¸ðÀÇ °á°ú¿Í ºñ±³ °ËÅäÇÏ¿© ¸ðÇÑ ÇØ¼®°á°ú¸¦ ¹ß»ý½ÃŰ´Â ±â¹ýÀ̸ç, º» ¿¬±¸¿¡¼­ Á¦½ÃÇÑ Courant ¼ö Á¦¾àÁ¶°ÇÀÇ ±Øº¹¿¡ °üÇÑ ¿¬±¸´Â ¼º°øÀûÀ¸·Î ÀÌ·ç¾îÁø °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ÇÑÆí, ¸ð¸àÆ®¹ýÀº ³óµµ°¡ Àüü °è»ê¿µ¿ªÀÇ ÀϺο¡ ºÐÆ÷ÇÏ´Â 2Â÷¿ø ¿µ¿ª¿¡¼­ÀÇ ÀÌ¼Û ¸ðÀǽà °è»ê½Ã°£¿¡ À־ ¸Å¿ì È¿À²ÀûÀÎ °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
The method of moments, a Lagrangian scheme, considers the zeroth, first, and second moments of the grid cell spatial distributions of the concentration and then advects the concentration by maintaining conservation of the moments. The reasonable inital description of the first and second moments as well as the mean concentration, the zeroth moments, in grid element is important in the method of moments. In this study, the description methods of each initial moment are reviewed, and the method of moments is extended to overcome the restrictions of Courant number. Its performance is compared with those of available Eulerian and Lagrangian schemes. As the results, the method is successfully extended to overcome the stability restriction and is an accurate scheme for the advection simulation of concentration distribution, especially of which the gradient is steep. In addition, the method is very promising scheme in terms of computational efficiency when the mixing is confined in a relatively small region to the entire domain in two-dimensional problem.
 
Ű¿öµå
¸ð¸àÆ®¹ý;Lagrangian ¹æ¹ý;À̼Û;Courant ¼öÀÇ Á¦¾à;method of moments;Lagrangian scheme;advection;limitation of Courant number;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.2, 1999³â, pp.99-110
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920062995)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿