¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.2, 1999³â, pp.185-195
¿îµ¿ÆÄ ÀÌ·ÐÀÇ Ãæ°ÝÆÄ 󸮱â¹ý
( Shock-Fitting in Kinematic Wave Modeling )
¹Ú¹®Çü;ÃÖ¼º¿í;ÇãÁØÇà;Á¶¿øÃ¶; ¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³ »çȸȯ°æ¡¤°ÇÃà°øÇкÎ;¿¬¼¼´ëÇб³ »çȸȯ°æ¡¤°ÇÃà°øÇкÎ;¿¬¼¼´ëÇб³ »çȸȯ°æ¡¤°ÇÃà°øÇкÎ;
 
ÃÊ ·Ï
¿îµ¿ÆÄ ÀÌ·ÐÀÇ ¼öÄ¡ÇØ¼®¿¡´Â À¯ÇÑÂ÷ºÐ¹ý°ú Ư¼º°î¼±¹ýÀÌ ÁÖ·Î »ç¿ëµÈ´Ù. À¯ÇÑÂ÷ºÐ¹ýÀÇ °æ¿ì Áö¹è¹æÁ¤½ÄÀÇ Â÷ºÐ°úÁ¤¿¡¼­ ¹ß»ýÇÏ´Â Àý´Ü¿ÀÂ÷¿¡ ÀÇÇÏ¿© ÷µÎÀ¯·®ÀÇ °¨¼è°¡ ¹ß»ýÇÑ´Ù. Ư¼º°î¼±¹ýÀÇ °æ¿ì ÷µÎÀ¯·®Àº ¾çÈ£ÇÏ°Ô º¸Á¸µÇÁö¸¸, ¼öÄ¡ÇØ¼® °úÁ¤¿¡¼­ ¹ß»ýÇÏ´Â Ãæ°ÝÆÄ¸¦ ÀûÀýÇÏ°Ô °í·ÁÇÏÁö ¸øÇÑ´Ù. º» ¿¬±¸¿¡¼­´Â ¿îµ¿ÆÄ À̷п¡ ±Ù°ÅÇÑ °¢°¢ÀÇ ¼öÂ÷ÇØ¼® ±â¹ýÀÇ Æ¯¼ºÀ» »ìÆìº¸¾ÒÀ¸¸ç, Ư¼º°î¼±¹ýÀ¸·Î ¼öÄ¡ÇØ¼®ÇÒ ¶§ ¹ß»ýÇÏ´Â Ãæ°ÝÆÄÀÇ ¼öġ󸮱â¹ýÀÎ Propagating Shock Fitting ±â¹ý°ú Approximate Shock Fitting ±â¹ý¿¡ ´ëÇÏ¿© Àû¿ë¼ºÀ» ÆÄ¾ÇÇÏ¿´´Ù. Propagation Shock Fitting ±â¹ýÀº Ãæ°ÝÆÄ¸¦ ¾çÈ£ÇÏ°Ô Ã³¸®ÇÏ¿´À¸³ª À¯·Î¿¬ÀåÀÌ ±ä ÇÏõ¿¡¼­ À¯·®ÀÌ ±Þº¯ÇÏ´Â °æ¿ì ÀûÀýÇÏ°Ô Ãæ°ÝÆÄ¸¦ ó¸®ÇÏÁö ¸øÇÏ¿´´Ù. Propagation Shock Fitting ±â¹ýÀ» ¹Ýº¹ÇÏ¿© °è»êÇÏ´Â Approximate Shock Fitting ±â¹ýÀº ÀÌ·¯ÇÑ °æ¿ì¿¡ ¹ß»ýÇÏ´Â Ãæ°ÝÆÄ¸¦ ÀûÀýÈ÷ ó¸®ÇÏ´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Ãæ°ÝÆÄ 󸮱â¹ý¿¡ ÀÇÇÑ ¿îµ¿ÆÄ ÀÌ·ÐÀÇ °è»ê°á°ú¿Í ¿ÏÀüµ¿·ÂÇÐÆÄ À̷п¡ ÀÇÇÑ °á°úµµ ºñ±³Çϰí ÅäÀÇÇÏ¿´´Ù.
The finite difference method and the method of characteristics are frequently used for the numerical analysis of kinematic wave model. Truncation errors cause the peak discharge dissipated in the solution from the finite difference method. The peak discharge is conserved in the solution from the finite difference method. The peak discharge is conserved in the solution from the method of characteristics, however, the shock may deteriorates the numerical solution. In this paper, distinctive features of each scheme are investigated for the numerical analysis of kinematic wave model, and applicability of shock fitting algorithm such as Propagating Shock Fitting and Approximated Shock Fitting methods are studied. Propagating Shock Fitting method appears to treat shock properly, however, it failed to fit the shock appropriately when applied to a sudden inflow change in a long river. Approximate Shock Sitting method, which uses finer elements, is found to be more proper shock-fitting than the Propagating Shock Fitting method. Comparisons are made between two solution from the kinematic wave theory with shock fitting and full dynamic wave theory, and the results are discussed.
 
Ű¿öµå
¿îµ¿ÆÄ ÀÌ·Ð;Ãæ°ÝÆÄ 󸮱â¹ý;Ư¼º°î¼±¹ý;kinematic wave theory;shock fitting;method of charactenstic;propagating shock fitting;approximated shock fitting;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.2, 1999³â, pp.185-195
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920063068)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿