|  | 
						
							| 
									
										|  | 
												
													| Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.5, 1999³â, pp.565-577   |  
													| ÇÏõÀÇ ÇÁ·¢Å» Ư¼ºÀ» °í·ÁÇÑ ÁöÇüÇÐÀû ¼ø°£´ÜÀ§µµ °³¹ß(I) ( Development of a GIUH Model Based on River Fractal Characteristics )
 |  
													| È«ÀÏÇ¥;°íÀç¿õ; Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ¼öÀÚ¿øÈ¯°æ¿¬±¸ºÎ;°Ç±¹´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú; |  |  |  
							|  |  
							| 
									
										|  | 
												
													|  |  
													| ÃÊ ·Ï |  
													| ÇÁ·¢Å» ±âÇÏÇÐÀº ºÒ±ÔÄ¢ÀûÀÌ°í º¹ÀâÇÑ ÀÚ¿¬ Çö»óÀ» ¼öÇÐÀûÀ¸·Î ³ªÅ¸³¾ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦½ÃÇØ ÁÙ ¼ö ÀÖÀ¸¸ç, ÀÚ±â»ó»ç¼ºÀ» °¡Áö°í ÀÖ´Â ÇÏõÀÇ Çü»óÀ» ºñ·ÔÇÑ Çϵµ¸ÁÀÇ ±¸¼ºÀº ÇÁ·¢Å» Â÷¿øÀ» °¡Áö°í ÀÖ´Â ÇÁ·¢Å» Çö»óÀ̶ó ÇÒ ¼ö ÀÖ´Ù. GIUH¶õ À¯¿ªÀÇ ¼ö¹®ÇÐÀû ÀÀ´äÀÎ IUH¿¡ ÇÏõÀÇ ÁöÇüÇÐÀûÀΠƯ¼ºÀ» Àû¿ëÇÑ °¿ì-À¯Ãâ ¸ðÇüÀ¸·Î, HortonÀÇ Â÷¼öºñ¸¦ ÀÌ¿ëÇÏ¿© ÁöÇüÇÐÀûÀΠƯ¼ºÀ» ¹Ý¿µÇÒ ¼ö ÀÖÀ¸¸ç ÇÏõ À¯¿ª¿¡¼ ÇÁ·¢Å» Â÷¿øÀº ±æÀ̺ñ, ¸éÀûºñ, ºÐ±âºñ µî HortonÀÇ Â÷¼öºñ¸¦ ÀÌ¿ëÇÏ¿© »êÁ¤ÇÒ¼ö ÀÖ´Ù. ÇÁ·¢Å» GIUH ¸ðÇüÀ» Á¦½ÃÇÏ¿´´Ù. ÇÁ·¢Å» GIUH ¸ðÇüÀº Rosso(1984)°¡ Á¦½ÃÇÑ GIUH-Nash ¸ðÇüÀÇ Çü»ó°è¼ö¿Í ±Ô¸ð°è¼ö µîÀÇ ¸Å°³º¯¼ö »êÁ¤½Ã À¯¿ªÀÇ ÀÚ±â»ó»ç¼ºÀ» ´ëº¯ÇÒ ¼ö ÀÖ´Â ÇÁ·¢Å» Â÷¿øÀ» Á÷Á¢ Àû¿ëÇÏ¿´À¸¸ç, ÇÏõÀÇ ±æÀ̺ñ¿Í ºÐ±âºñ ¸¸ÀÇ ÇÔ¼ö·Î ³ªÅ¸³»¾ú´Ù. |  
													|  |  
													| The geometric patterns of a stream network in a drainage basin can be viewed as a "fractal" with fractal dimensions. Fractals provide a mathematical framework for treatment of irregular, ostensively complex shapes that show similar patterns or geometric characteristics over a range of scale. GIUH (Geomorphological Instantaneous Unit Hydrograph) is based on the hydrologic response of surface runoff in a catchment basin. This model incorporates geomorphologic parameters of a basin using Horton's order ratios. For an ordered drainage system, the fractal dimensions can be derived from Horton's laws of stream numbers, stream lengths and stream areas. In this paper, a fractal approach, which is leading to representation of a 2-parameter Gamma distribution type GIUH, has been carried out to incorporate the self similarity of the channel networks based on the high correlations between the Horton's order ratios. The shape and scale parameter of the GIUH-Nash model of IUH in terms of Horton's order ratios of a catchment proposed by Rosso(l984J are simplified by applying the fractal dimension of main stream length and channel network of a river basin. basin. |  
													|  |  
													| Ű¿öµå |  
													| ÇÁ·¢Å»;ÇÁ·¢Å» GIUH ¸ðÇü;HortonÀÇ Â÷¼ö¹ýÄ¢;Nash ¸ðÇü;ÀÚ±â»ó»ç¼º;fractal;Fractal GIUH;Horton's ratio;Nash-model;self-similarity; |  
													|  |  |  |  
							|  |  
							| 
									
										|  | 
												
													| Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.5, 1999³â, pp.565-577 Çѱ¹¼öÀÚ¿øÇÐȸ
 ISSN : 1226-6280
 UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920063304)
 ¾ð¾î : Çѱ¹¾î
 |  
													|  |  
													| ³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |  
													|  |  |  |  
							|  |  |