|  | 
						
							| 
									
										|  | 
												
													| Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.6, 1999³â, pp.607-616   |  
													| ºñº¸Á¸¼º ¿À¿°¹°Áú¿¡ ´ëÇÑ Á¾È®»ê ¹æÁ¤½ÄÀÇ ¼öÄ¡ÇØ¹ý ( A Numerical Method for Longitudinal Dispersion Equation for Nonconservative Contaminants )
 |  
													| À¯¸í°ü;Àü°æ¼ö; ¼º±Õ°ü´ëÇб³ Åä¸ñ°øÇϰú ´ëÇпø(Á¹);¼º±Õ°ü´ëÇб³ Åä¸ñ°øÇаú; |  |  |  
							|  |  
							| 
									
										|  | 
												
													|  |  
													| ÃÊ ·Ï |  
													| ºñº¸Á¸¼º ¿À¿°¹°ÁúÀÇ Á¾È®»ê¿¡ °üÇÑ ¼öÄ¡¸ðÇüÀ» °³¹ßÇÏ¿´´Ù. °è»ê±â¹ýÀ¸·Î´Â Á¾È®»ê ¹æÁ¤½ÄÀ» À̼Û, °¨¼è ¹× È®»ê ¹æÁ¤½ÄÀ¸·Î ºÐ¸®Çϰí, ÀÌµé ¹æÁ¤½ÄÀ» 1/3 ½Ã°£ °£°Ý¿¡ ´ëÇÏ¿© ¹ø°¥¾Æ °è»êÇÏ´Â ´Ü°èºÐ¸® À¯ÇÑÂ÷ºÐ±â¹ýÀ» »ç¿ëÇÏ¿´´Ù. À̼۹æÁ¤½Ä¿¡ ´ëÇØ¼´Â Holly-Preissmann ±â¹ýÀ», °¨¼è¹æÁ¤½Ä¿¡ ´ëÇØ¼´Â ÇØ¼®Àû ¹æ¹ýÀ», È®»ê¹æÁ¤½Ä¿¡ ´ëÇØ¼´Â Crank-Nicholson ±â¹ýÀ» °¢°¢ »ç¿ëÇÏ¿´´Ù. ¿À¿°¹°ÁúÀÌ ºÒ±ÕÀÏ È帧 ³»·Î ¿¬¼ÓÀûÀ¸·Î À¯ÀԵǴ °æ¿ì ¹× ±ÕÀÏ È帧 ³»·Î ¼ø°£ÀûÀ¸·Î ºÎÇϵǴ °æ¿ì¿¡ ´ëÇÑ Á¾È®»ê ¹®Á¦¿¡ ¸ðÇüÀ» Àû¿ëÇÏ¿© °è»ê°á°ú¸¦ Á¤È®ÇØ¿Í ºñ±³ÇÔÀ¸·Î½á ¸ðÇüÀ» °ËÁõÇÏ¿´´Ù. ¶ÇÇÑ °¨¼è¹æÁ¤½ÄÀÇ ¼öÄ¡ÇØ¹ýÀ¸·Î½á Euler ¹æ¹ýÀ» »ç¿ëÇÏ´Â ±âÁ¸ÀÇ ¸ðÇü¿¡ °è»ê°á°ú¸¦ ºñ±³ÇÏ¿´´Ù. °¨¼è°è¼ö°¡ Ä¿Áú¼ö·Ï º» ¸ðÇüÀÌ ±âÁ¸ÀÇ ¸ðÇü¿¡ ºñÇÏ¿© ´õ¿í Á¤È®ÇÑ °è»ê°á°ú¸¦ ³ªÅ¸³»¾ú´Ù. |  
													|  |  
													| A fractional step finite difference model for the longitudinal dispersion of nonconservative contaminants is developed. It is based on splitting the longitudinal dispersion equation into a set of three equations each to be solved over a one-third time step. The fourth-order Holly-Preissmann scheme, an analytic solution, and the Crank-Nicholson scheme are used to solve the equations for the pure advection, the first-order decay, and the diffusion, respectively. To test the model, it is applied to simulate the longitudinal dispersion of continuous source released into a nonuniform flow field as well as the dispersion of an instantaneous source in a uniform flow field. The results are compared with the exact solution and those computed by an existing model. Compared to the existing model which uses Euler method for the first-order decay equation, the present model yield more accurate results as the decay coefficient increases. |  
													|  |  
													| Ű¿öµå |  
													| Á¾È®»ê;ºñº¸Á¸¼º ¿À¿°¹°Áú;´Ü°èºÐ¸® À¯ÇÑÂ÷ºÐ¹ý;¼öÄ¡¸ðÇü;Longitudinal dispersion;Nonconservative contaminants;Fractional step finite differencr method;Numerical model; |  
													|  |  |  |  
							|  |  
							| 
									
										|  | 
												
													| Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.6, 1999³â, pp.607-616 Çѱ¹¼öÀÚ¿øÇÐȸ
 ISSN : 1226-6280
 UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920063330)
 ¾ð¾î : Çѱ¹¾î
 |  
													|  |  
													| ³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |  
													|  |  |  |  
							|  |  |