¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.6, 1999³â, pp.607-616
ºñº¸Á¸¼º ¿À¿°¹°Áú¿¡ ´ëÇÑ Á¾È®»ê ¹æÁ¤½ÄÀÇ ¼öÄ¡ÇØ¹ý
( A Numerical Method for Longitudinal Dispersion Equation for Nonconservative Contaminants )
À¯¸í°ü;Àü°æ¼ö; ¼º±Õ°ü´ëÇб³ Åä¸ñ°øÇϰú ´ëÇпø(Á¹);¼º±Õ°ü´ëÇб³ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
ºñº¸Á¸¼º ¿À¿°¹°ÁúÀÇ Á¾È®»ê¿¡ °üÇÑ ¼öÄ¡¸ðÇüÀ» °³¹ßÇÏ¿´´Ù. °è»ê±â¹ýÀ¸·Î´Â Á¾È®»ê ¹æÁ¤½ÄÀ» À̼Û, °¨¼è ¹× È®»ê ¹æÁ¤½ÄÀ¸·Î ºÐ¸®Çϰí, ÀÌµé ¹æÁ¤½ÄÀ» 1/3 ½Ã°£ °£°Ý¿¡ ´ëÇÏ¿© ¹ø°¥¾Æ °è»êÇÏ´Â ´Ü°èºÐ¸® À¯ÇÑÂ÷ºÐ±â¹ýÀ» »ç¿ëÇÏ¿´´Ù. À̼۹æÁ¤½Ä¿¡ ´ëÇØ¼­´Â Holly-Preissmann ±â¹ýÀ», °¨¼è¹æÁ¤½Ä¿¡ ´ëÇØ¼­´Â ÇØ¼®Àû ¹æ¹ýÀ», È®»ê¹æÁ¤½Ä¿¡ ´ëÇØ¼­´Â Crank-Nicholson ±â¹ýÀ» °¢°¢ »ç¿ëÇÏ¿´´Ù. ¿À¿°¹°ÁúÀÌ ºÒ±ÕÀÏ È帧 ³»·Î ¿¬¼ÓÀûÀ¸·Î À¯ÀԵǴ °æ¿ì ¹× ±ÕÀÏ È帧 ³»·Î ¼ø°£ÀûÀ¸·Î ºÎÇϵǴ °æ¿ì¿¡ ´ëÇÑ Á¾È®»ê ¹®Á¦¿¡ ¸ðÇüÀ» Àû¿ëÇÏ¿© °è»ê°á°ú¸¦ Á¤È®ÇØ¿Í ºñ±³ÇÔÀ¸·Î½á ¸ðÇüÀ» °ËÁõÇÏ¿´´Ù. ¶ÇÇÑ °¨¼è¹æÁ¤½ÄÀÇ ¼öÄ¡ÇØ¹ýÀ¸·Î½á Euler ¹æ¹ýÀ» »ç¿ëÇÏ´Â ±âÁ¸ÀÇ ¸ðÇü¿¡ °è»ê°á°ú¸¦ ºñ±³ÇÏ¿´´Ù. °¨¼è°è¼ö°¡ Ä¿Áú¼ö·Ï º» ¸ðÇüÀÌ ±âÁ¸ÀÇ ¸ðÇü¿¡ ºñÇÏ¿© ´õ¿í Á¤È®ÇÑ °è»ê°á°ú¸¦ ³ªÅ¸³»¾ú´Ù.
A fractional step finite difference model for the longitudinal dispersion of nonconservative contaminants is developed. It is based on splitting the longitudinal dispersion equation into a set of three equations each to be solved over a one-third time step. The fourth-order Holly-Preissmann scheme, an analytic solution, and the Crank-Nicholson scheme are used to solve the equations for the pure advection, the first-order decay, and the diffusion, respectively. To test the model, it is applied to simulate the longitudinal dispersion of continuous source released into a nonuniform flow field as well as the dispersion of an instantaneous source in a uniform flow field. The results are compared with the exact solution and those computed by an existing model. Compared to the existing model which uses Euler method for the first-order decay equation, the present model yield more accurate results as the decay coefficient increases.
 
Ű¿öµå
Á¾È®»ê;ºñº¸Á¸¼º ¿À¿°¹°Áú;´Ü°èºÐ¸® À¯ÇÑÂ÷ºÐ¹ý;¼öÄ¡¸ðÇü;Longitudinal dispersion;Nonconservative contaminants;Fractional step finite differencr method;Numerical model;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.6, 1999³â, pp.607-616
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920063330)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿