¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.33, no.4, 2000³â, pp.505-515
½Å°æ¸Á ¾Ë°í¸®ÁòÀ» Àû¿ëÇÑ À¯Ãâ¼ö¹®°î¼±ÀÇ ¿¹Ãø
( Forecasting of Runoff Hydrograph Using Neural Network Algorithms )
¾È»óÁø;Àü°è¿ø;±è±¤ÀÏ; ÃæºÏ´ëÇб³ Åä¸ñ°øÇаú;ÃæºÏ´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;POSCO ÀÚ¹®¿ª;
 
ÃÊ ·Ï
º» ¿¬±¸´Â ÇÏõ¿¡¼­ È£¿ìÀÇ ¹ß»ý¿¡ µû¶ó ÇÏõ À¯Ãâ¼ö¹®°î¼±À» ¿¹ÃøÄÚÀÚ ºí·¢¹Ú½º¸ðÇüÀÇ ½Å°æ¸ÁÀÌ·ÐÀ» Àû¿ëÇÏ¿© ¼ö¹®ÇÐÀûÀÎ ¹®Á¦¸¦ ±Ô¸íÇϰíÀÚ ÇÏ¿´´Ù. À̸¦ À§ÇØ ½Å°æ¸Á ÀÌ·Ð Áß Levenverg-Marquardt ¹æ¹ý¿¡ ÀÇÇÑ ¿ÀÂ÷¿ªÀüÆÄ ¾Ë°í¸®Áò°ú Radial Basis Function Network(RBFN)¸¦ ÀÌ¿ëÇÏ¿© IHP ´ëÇ¥À¯¿ªÀÎ º¸Ã»Ã»À¯¿ª¿¡ ¼ö¹®°î¼±À» Àû¿ëÇÏ¿© ¼±ÇàÀ¯Ãâ·® ¿¹Ãø°ú ¹ÌÇнÀ À¯¿ªÀÇ Àû¿ë¼ºÀ» °ËÅäÇÏ¿´´Ù. ±× °á°ú º¹ÀâÇÏ°í ºñ¼±ÇüÀûÀÎ ¼ö¹®°èÀÇ °­¿ì-À¯Ãâ °úÁ¤ÀÇ ÇнÀ¿¡ ÀÖ¾î RBFNÀº Àº´ÐÃþ¿¡¼­ ÀÚÀ²ÇнÀ, Ãâ·ÂÃþ¿¡¼­ ÁöµµÇнÀÀÇ µÎ ´Ü°è·Î ³ª´©¾î ÇнÀÀ» ÇÔÀ¸·Î¼­ BP ¾Ë°í¸®Áòº¸´Ù ÇнÀ½Ã°£ÀÌ ºü¸£°Ô ³ªÅ¸³µ°í, ¼±ÇàÀ¯Ãâ·®ÀÇ ¿¹Ãø°á°ú ¿©·¯ Åë°èÀû ÁöÇ¥¿¡¼­ RBFNÀÌ BP ¾Ë°í¸®Áòº¸´Ù ÁÁÀº °á°ú¸¦ ¾òÀ» ¼ö ÀÖ¾ú´Ù. ¹ÌÇнÀ À¯¿ªÀÇ Àû¿ë¼º °ËÅä¿¡¼­µµ BP¾Ë°í¸®Áò°ú RBFN ¸ðµÎ ÷µÎÄ¡°¡ ºñ±³Àû ½ÇÃøÀÚ·áÀÇ °æÇâ°ú ºñ½ÁÇÑ °æÇâÀ¸·Î ³ªÅ¸³µ´Ù.
THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.
 
Ű¿öµå
À¯Ãâ¼ö¹®°î¼±;¿ªÀüÆÄ¾Ë°í¸®Áò;Runoll Hydrograph;Bark-Propagation algorithm;Levenberg-Marquardt method;Radial Basis Function Network;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.33, no.4, 2000³â, pp.505-515
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200011920063915)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿