¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.33, no.5, 2000³â, pp.581-592
½Ä»ýµÈ °³¼ö·Î¿¡¼­ ³­·ù ±¸Á¶¿Í ºÎÀ¯»ç À̵¿ Çö»óÀÇ ¼öÄ¡ÇØ¼®
( Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows )
°­Çü½Ä;ÃÖ¼º¿í; ¿¬»õ´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³»çȸȯ°æ.°ÇÃà°øÇкÎ;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â ½Ä»ýµÈ °³¼ö·Î¿¡¼­ÀÇ ³­·ù ±¸Á¶¿Í ºÎÀ¯»ç À̵¿À» ¼öÄ¡¸ðÀÇÇÏ¿´´Ù. ³­·ùÆóÇÕ½ÄÀ¸·Î´Â $ extsc{k}-;varepsilon$ ³­·ù¸ðÇüÀ» »ç¿ëÇÏ¿´´Ù. ¼öÄ¡¸ðÀǸ¦ ÅëÇØ Æò±ÕÀ¯¼Ó, ³­·ù°­µµ, ·¹À̳îÁî ÀÀ·Â, ³­·ù¿¡³ÊÁö »ý¼º ¹× ¼Ò¸êÀÇ ºÐÆ÷¸¦ °è»êÇÏ¿´À¸¸ç, ±âÁ¸ÀÇ ½ÇÇè°á°ú¿Í ºñ±³ÇÏ¿´´Ù. ½Ä»ý¿¡ ÀÇÇÑ Ç×·ÂÀ¸·Î ÀÎÇÏ¿© Æò±ÕÀ¯¼ÓÀÌ Àü¹ÝÀûÀ¸·Î °¨¼ÒµÇ¾úÀ¸¸ç, ÀÌ¿¡ µû¶ó ³­·ù°­µµ¿Í ·¹À̳îÁî ÀÀ·ÂÀÇ ºÐÆ÷ ¿ª½Ã ¾àÈ­µÇ¾ú´Ù. ħ¼ö½Ä»ýÀÇ °æ¿ì, ½Ä»ý³ôÀ̺¸´Ù ³ôÀº ±¸°£¿¡¼­´Â Àü´Ü¿¡ ÀÇÇÑ ³­·ù¿¡³ÊÁö »ý¼ºÀÌ Áö¹èÀûÀ̸ç, ½Ä»ý³ôÀÌ º¸´Ù ³·Àº ±¸°£¿¡¼­´Â ÈÄ·ù¿¡ ÀÇÇÑ ³­·ù¿¡³ÊÁö »ý¼ºÀÌ Áö¹èÀûÀÓÀ» È®ÀÎÇÏ¿´´Ù. ¶ÇÇÑ Á¤¼ö½Ä»ýÀÇ °æ¿ì, Àüä ¼ö½É¿¡ °ÉÃÄ ÈÄ·ù¿¡ ÀÇÇÑ ³­·ù¿¡³ÊÁö »ý¼ºÀÌ Áö¹èÀûÀ¸·Î ¹ß»ýÇÏ¿´´Ù. ´ëüÀûÀ¸·Î ¼öÄ¡¸ðÀÇ¿¡ ÀÇÇÑ °á°ú°¡ ½ÇÇè°ª°ú À¯»çÇÑ ¾ç»óÀ» º¸ÀÌ´Â °ÍÀÌ È®ÀεǾú´Ù. ¼öÄ¡¸ðÇüÀ¸·ÎºÎÅÍ °è»êµÈ ³­·ùµ¿Á¡¼º°è¼ö ºÐÆ÷¸¦ ÀÌ¿ëÇÏ¿© ºÎÀ¯»ç º¸Á¸¹æÁ¤½ÄÀ» ¼öÄ¡ÇØ¼®ÇÏ¿´´Ù. ½Ä»ýµÈ °³¼ö·Î¿¡¼­ÀÇ ºÎÀ¯»ç ³óµµ´Â ÀÏ¹Ý °³¼ö·Î¿¡ ºñÇØ Àü ¼ö½É¿¡ °ÉÃÄ ±ÕÀÏÇÏ°Ô ºÐÆ÷ÇÏ¿´´Ù. ¶ÇÇÑ ½Ä»ý¹Ðµµ°¡ Áõ°¡ÇÒ¼ö·Ï ºÎÀ¯»ç·®Àº °¨¼ÒÇϸç, µ¿ÀÏÇÑ ½Ä»ý¹Ðµµ¿¡ ´ëÇØ¼­´Â ÀÔÀÚÀÇ Å©±â°¡ ÀÛÀ»¼ö·Ï ºÎÀ¯»ç·®ÀÌ Áõ°¡ÇÔÀ» È®ÀÎÇÏ¿´´Ù.
Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $ extsc{k}-;varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.
 
Ű¿öµå
½Ä»ýµÈ °³¼ö·Î È帧;³­·ù±¸Á¶;ºÎÀ¯»çÀ̵¿;$extsc{k}-{varepsilon}$ ³­·ù¸ðÇü;vegetated open-channel flows;turbulence structure;suspended sediment transport;$ extsc{k}-{varepsilon}$ turbulence model;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.33, no.5, 2000³â, pp.581-592
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200011920730456)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿