¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.33, no.6, 2000³â, pp.805-814
2Â÷¿ø °æ°è¿ä¼Ò¹ýÀ» ÀÌ¿ëÇÑ Bragg¹Ý»ç ÇØ¼®
( Analysis of Bragg Reflection using Two-Dimensional Boundary Element Method )
±è¿µÅÃ;Á¶¿ë½Ä;ÀÌÁ¤±Ô; ÇѾç´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;ÇѾç´ëÇб³ µµ½Ãȯ°æ°Ç¼³°øÇаú±º;ÇѾç´ëÇб³ µµ½Ãȯ°æ°Ç¼³°øÇаú±º;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â °æ°è¿ä¼Ò¹ýÀ» ÀÌ¿ëÇÏ¿© ¼ö½ÉÀÌ º¯ÇÏ´Â ÁöÇüÀ» Åë°úÇÒ ¶§ ¹ß»ýÇÏ´Â ÆÄ¶ûÀÇ È¸ÀýÀ» ¼öÄ¡ÇØ¼®ÇÏ¿´´Ù. ¸ÕÀú, Æ®·»Ä¡ÁöÇüÀ» Åë°úÇÏ´Â ÆÄ¶ûÀÇ ¹Ý»çÀ²°ú Åë°úÀ²À» °è»êÇÏ¿´À¸¸ç °íÀ¯ÇÔ¼öÀü°³¹ý¿¡ ÀÇÇÑ °á°ú¿Í ºñ±³ÇÏ¿© º» ¸ðÇüÀ» °ËÁõÇÏ¿´´Ù. ¾Æ¿ï·¯, °æ°è¿ä¼Ò¹ýÀ» Á¤ÇöÆÄÇü ÁöÇü¿¡ Àû¿ëÇÏ¿© ¹Ý»çÀ² ¹× Bragg ¹Ý»ç¸¦ ¿¬±¸ÇÏ¿´´Ù. ¼öÄ¡ÇØ¼®¿¡ ÀÇÇÑ ¹Ý»çÀ²Àº ¼ö¸®¸ðÇü½ÇÇè¿¡ ÀÇÇÑ °üÃø°á°ú ¹× °íÀ¯ÇÔ¼öÀü°³¹ý¿¡ ÀÇÇÑ °á°ú¿Í ºñ±³ÇÏ¿´´Ù. ÀüüÀûÀ¸·Î º» ¿¬±¸ÀÇ °á°ú´Â ±âÁ¸ÀÇ ÀÚ·á¿Í Àß ÀÏÄ¡ÇÏ¿´´Ù.
A numerical model based on the boundary element method is employed to describe diffraction of monochromatic water waves due to varying topographies. The model is firstly verified by comparing obtained reflection and transmission coefficients of waves over a trench to those of the eigenfunction expansion method. The model is then used to investigate the Bragg reflection of waves over sinusoidally varying topographies. Calculated reflection coefficients are compared to available laboratory measurements and semi-theoretical results. A reasonably good agreement is observed.served.
 
Ű¿öµå
°æ°è¿ä¼Ò¹ý;Bragg ¹Ý»ç;°íÀ¯ÇÔ¼öÀü°³¹ý;Á¤ÇöÆÄÇüÁöÇü;boundary element method;Bragg reflection;eigenfunction expansion method;sinusoidally varying topographies;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.33, no.6, 2000³â, pp.805-814
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200011920730482)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿