|
|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.39, no.5, 2006³â, pp.453-466
|
CA-Markov ±â¹ýÀ» ÀÌ¿ëÇÑ ±âÈĺ¯È¿¡ µû¸¥ ¼Ò¾ç°´ï À¯¿ªÀÇ ¼ö¹®ºÐ¼®
( Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed ) |
| ÀÓÇõÁø;±ÇÇüÁß;¹è´öÈ¿;±è¼ºÁØ; °Ç±¹´ëÇб³ ´ëÇпø Áö¿ª°Ç¼³È¯°æ°øÇаú;°Ç±¹´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;¼¼Á¾´ëÇб³ Åä¸ñȯ°æ°øÇкÎ;°Ç±¹´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;
|
|
|
 |
|
| |
| ÃÊ ·Ï |
| º» ¿¬±¸´Â CCCma CGCM2 ±âÈĸðÇüÀ» ÀÌ¿ëÇÏ¿© SRES A2, B2 ½Ã³ª¸®¿À ¸ðÀǸ¦ ÅëÇÑ ±âÈĺ¯È°¡ 2050³â, 2100³â ¼Ò¾ç°´ïÀ¯¿ªÀÇ ¼ö¹®È¯°æ¿¡ ¹ÌÄ¡´Â º¯È¾ç»óÀ» SLURP ¼ö¹®¸ðÇüÀ» ÀÌ¿ëÇÏ¿© ºÐ¼®Çϴµ¥ ¸ñÀûÀÌ ÀÖ´Ù. ¼ö¹®¿µÇâÀ» Æò°¡Çϱâ À§ÇØ »ç¿ëµÈ ¸ðÇüÀÇ ÀÔ·ÂÀÚ·á´Â NDVIÀÇ °æ¿ì, 1998³âºÎÅÍ 2002³â±îÁö 5°³³â¿¡ °ÉÄ£ ¿ùº° NDVI¸¦ »ç¿ëÇÏ¿© ±â¿Â-NVDI¿ÍÀÇ ¼±Çüȸ±ÍºÐ¼®À» ÅëÇØ A2, B2 °¢ ½Ã³ª¸®¿Àº° NDVI °ªÀ» ÃßÁ¤ÇÏ¿´À¸¸ç ´ë»óÀ¯¿ªÀÇ ÅäÁöÀ̿뿡 µû¸¥ °¢ Ç׸ñÀÇ °æ³âº¯È¸¦ ºÐ¼®Çϱâ À§ÇØ Landsat TM À§¼º¿µ»óÀ» ÀÌ¿ëÇÏ¿© 1985³âºÎÅÍ 2000³âÀÇ 5³â ½Ã°£°£°ÝÀ» °®´Â 4ÀåÀÇ ÅäÁöÇǺ¹µµ¸¦ »ý¼ºÇÏ¿´´Ù. »ý¼ºµÈ ÅäÁöÇǺ¹µµ¸¦ »ç¿ëÇÏ¿© CA-Markov ¿¬¼â±â¹ýÀ» ÅëÇÑ ÇâÈÄ 50³â, 100³â ÈÄÀÇ ÅäÁöÀ̿뺯ȻóŸ¦ ¸ðÀÇÇÏ¿´´Ù. °¢ ½Ã³ª¸®¿Àº° 50³â, 100³â ÈÄÀÇ ÃßÁ¤µÈ ±â»ó, NDVI, ÅäÁöÀ̿뵵¸¦ ÅëÇÏ¿© SLURP ¸ðÇü¿¡ Àû¿ëÇÑ °á°ú, ÅäÁöÀÌ¿ëÇöȲÀº CA-Markov ¿¬¼â±â¹ýÀ» ÅëÇØ ¸ðÀÇµÈ ÇâÈÄ 50³â, 100³âÀÇ ÀÌ¿ëÇöȲÀº »ê¸²ÀÇ ºÐÆ÷¸éÀûÀº °¨¼ÒÇÏ´Â ¹Ý¸é ÁÖ°ÅÁö, ³ªÁö, ÃÊÁö µîÀº µÎµå·¯Áö°Ô Áõ°¡ÇÏ¿´´Ù. ¶ÇÇÑ, ¿¬¼â±â¹ýÀÇ ¸ðÀÇ ½Ã°£°£°Ý ÀÌ °üÃø°ªÀÇ ¸ðÁý´ÜÀÇ ½Ã°£Çػ󵵿¡ ºñÇØ Áö³ªÄ¡°Ô Ŭ °æ¿ì °¢ Ç׸ñº° ÃßÀ̰æÇâÀº ÀÏÁ¤ºÎºÐ¿¡¼ ¼ö·ÅµÇ¾ú´Ù. ¶ÇÇÑ, ±âÈĺ¯È¿¡ µû¸¥ ¼ö¹®¿µÇâÀ» ºÐ¼®Çϱâ À§ÇØ °¡»ó½Ã³ª¸®¿À¿¡ ´ëÇÑ Áõ¹ß»ê·® Æò°¡¸¦ ½Ç½ÃÇÏ¿´´Ù. Áõ¹ß»ê·® Æò°¡´Â FAO Penman-Monteith »êÁ¤ °ø½ÄÀ» ÅëÇÏ¿© ±â¿Â, Àϻ緮, dz¼Ó¿¡ ´ëÇÑ °¡»ó½Ã³ª¸®¿À¸¦ Àû¿ëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. ±âÈĺ¯È¿Í °¡»ó½Ã³ª¸®¿À¿¡ µû¸¥ ¼ö¹®ºÐ¼® °á°ú, ¸ðÀÇÀ¯Ãâ·®Àº SRES A2, B2 ½Ã³ª¸®¿À»ó¿¡¼ ÇöÀçÀÇ °üÃøÀڷẸ´Ù ´ë·« 50%ÀÇ °¨¼Ò¸¦ º¸À̰í ÀÖÀ¸¸ç ÅäÁöÀ̿뺯Ȱ¡ ÇöÀç¿Í µ¿ÀÏÇÒ °æ¿ì SRES ½Ã³ª¸®¿À¸¦ Àû¿ëÇÑ °æ¿ìº¸´Ù ¾à 3$sim$5%°¡·® ´õ °¨¼ÒµÊÀ» È®ÀÎÇÏ¿´´Ù. |
|
| The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$sim$5%. |
| |
| Ű¿öµå |
| ±âÈĺ¯È¸ðÇü;Áõ¹ß»ê;SLURP;GCMs (Generation Climate Models);CA (Cellular automata);Markov-Chain;Evapotranspiration; |
| |
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.39, no.5, 2006³â, pp.453-466
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200626813042372)
¾ð¾î : Çѱ¹¾î |
|
| ³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|
|