¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.39, no.8, 2006³â, pp.677-690
LH-OAT ¹Î°¨µµ ºÐ¼®°ú SCE-UA ÃÖÀûÈ­ ¹æ¹ýÀ» ÀÌ¿ëÇÑ SWAT ¸ðÇüÀÇ ÀÚµ¿º¸Á¤
( Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method )
À̵µÈÆ; °æÈñ´ëÇб³ Åä¸ñ. °ÇÃà´ëÇÐ;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â LH-OAT (Latin Hypercube Ore factor At a Time) ¹Î°¨µµºÐ¼® ¹æ¹ý°ú SCE-UA (Shuffled Complex Evolution at University of Arizona) ÃÖÀûÈ­ ±â¹ýÀ» Àû¿ëÇÏ¿© º¸Ã»Ãµ À¯¿ª¿¡¼­ SWAT¸ðÇü¿¡ ´ëÇÑ ÀÚµ¿º¸Á¤ ¹æ¹ýÀ» Á¦½ÃÇÏ¿´´Ù. LH-OAT ¹æ¹ýÀº Àü¿ª ¹Î°¨µµºÐ¼®°ú ºÎºÐ ¹Î°¨µµ ºÐ¼®ÀÇ ÀåÁ¡À» Á¶ÇÕÇÏ¿© °¡¿ë¸Å°³º¯¼ö °ø°£¿¡ ´ëÇÏ¿© È¿À²ÀûÀ¸·Î ¸Å°³º¯¼öÀÇ ¹Î°¨µµ ºÐ¼®ÀÌ °¡´ÉÇÏ°Ô ÇÏ¿´´Ù. LH-OAT¹Î°¨µµ ºÐ¼®À¸·ÎºÎÅÍ °áÁ¤µÈ ¸Å°³º¯¼öÀÇ ¹Î°¨µµ µî±ÞÀº SWAT ¸ðÇüÀÇ ÀÚµ¿º¸Á¤ °úÁ¤¿¡¼­ ¿ä±¸µÇ´Â º¸Á¤´ë»ó ¸Å°³º¯¼öÀÇ ¼±Åÿ¡ À¯¿ëÇÏ°Ô Àû¿ëµÉ ¼ö ÀÖ´Ù. SCE-UA ¹æ¹ýÀ» Àû¿ëÇÑ SWAT¸ðÇüÀÇ ÀÚµ¿º¸Á¤ ÇØ¼®°á°ú´Â º¸Á¤ÀÚ·á, º¸Á¤¸Å°³º¯¼ö, Åë°èÀû ¿ÀÂ÷ÀÇ ¼±Åÿ¡ µû¶ó¼­ ¸ðÇüÀÇ ¼º´ÉÀÌ Á¿ìµÇ¾ú´Ù. º¸Á¤±â°£°ú º¸Á¤¸Å°³º¯¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó °ËÁõ±â°£¿¡ ´ëÇÑ RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), NMSE (Normalized Mean Square Error) µîÀÇ ¸ðÇü¿ÀÂ÷´Â °¨¼ÒÇÏ¿´Áö¸¸, NAE (Normalized Average Error) ¹× SDR(Standard Deviation Ratio)Àº °³¼±µÇÁö ¾Ê¾Ò´Ù. SWAT¸ðÇüÀÇ º¸Á¤¿¡ Àû¿ëµÇ´Â º¸Á¤ÀÚ·á, º¸Á¤¸Å°³º¯¼ö ¹× ¸ðÇüÆò°¡¸¦ À§ÇÑ Åë°èÀû ¿ÀÂ÷ ¼±ÅÃÀÌ ÇØ¼®°á°ú¿¡ ¹ÌÄ¡´Â º¹ÀâÇÑ ¿µÇâÀ» ÀÌÇØÇϱâ À§ÇÏ¿© ´Ù¾çÇÑ ´ëÇ¥À¯¿ªÀ» ´ë»óÀ¸·Î Ãß°¡ÀûÀÎ ¿¬±¸°¡ ÇÊ¿äÇÏ´Ù.
The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.
 
Ű¿öµå
SWAT ¸ðÇü;ÀÚµ¿º¸Á¤;¹Î°¨µµºÐ¼®;ÀÏ À¯Ãâ·®;SWAT model;automatic calibration;sensitivity analysis;SCE-UA;daily runoff;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.39, no.8, 2006³â, pp.677-690
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741444830)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿