¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.39, no.8, 2006³â, pp.669-676
Co-kriging ±â¹ýÀ» ÀÌ¿ëÇÑ Àϰ­¿ì·® °ø°£ºÐÆ÷ ¸ðµ¨¸µ
( Spatial Distribution Modeling of Daily Rainfall Using Co-Kriging Method )
Ȳ¼¼¿î;¹Ú½Â¿ì;Àå¹Î¿ø;Á¶¿µ°æ; ¼­¿ï´ëÇб³ ³ó¾÷»ý¸í°úÇבּ¸¿ø;¼­¿ï´ëÇб³ ³ó¾÷»ý¸í°úÇдëÇÐ Áö¿ª½Ã½ºÅÛ°øÇÐÀü°ø;¼­¿ï´ëÇб³ ³ó¾÷»ý¸í°úÇבּ¸¿ø;¼­¿ï´ëÇб³ ³ó¾÷»ý¸í°úÇдëÇÐ Áö¿ª½Ã½ºÅÛ°øÇÐÀü°ø;
 
ÃÊ ·Ï
¼ö¹® ÀÎÀÚ, ƯÈ÷ °­¿ì·®ÀÇ °ø°£ ºÐÆ÷ ÇØ¼®Àº ¼öÀÚ¿ø ºÐ¾ß¿¡¼­ Áß¿äÇÑ °ü½É»ç Áß ÇϳªÀÌ´Ù. ±âÁ¸ÀÇ Æ¼¼¾¹ý(Thiessen), ¿ª°Å¸®¹ý, µî¿ì¼±¹ýÀÌ °ø°£Àû ¿¬¼Ó¼º°ú ÁöÇü Ư¼ºÀ» °í·ÁÇÏÁö ¸øÇÏ´Â ÇѰ踦 °¡Áö°í Àִµ¥, º» ¿¬±¸¿¡¼­´Â Àϰ­¿ì·®¿¡ ´ëÇÑ °­¿ì °ø°£ºÐÆ÷ ÇØ¼®ÀÇ Á¤È®µµ Çâ»óÀ» À§ÇØ ¿ùÆò±Õ ÀÚ·á¿Í Æò³â °­¿ì·® ÀڷḦ »êÃâÇÏ¿©, À̵é°ú ¼öÁýÇÑ Àϰ­¿ì·® ÀÚ·á°£ÀÇ »ó°ü¼º ºÐ¼®ÇÏ¿´À¸¸ç À̸¦ ±Ù°Å·Î Áö±¸Åë°èÇÐÀû ºÐ¼®¹æ¹ýÀÎ ÄÚÅ©¸®±ë(Co-kriging) ±â¹ýÀÇ ÀÌÂ÷º¯¼ö·Î Àû¿ëÇÏ¿© °ø°£ ºÐÆ÷ ÇØ¼®À» ½Ç½ÃÇÏ¿´À¸¸ç, ±âÁ¸ÀÇ ¿ª°Å¸®¹ý°ú ´Ü¼ø Å©¸®±ë ±â¹ý¿¡ ÀÇÇÑ ºÐ¼®°á°ú¿Í ºñ±³ÇÏ¿´´Ù. ±¸ÃàÇÑ °­¿ì·® ÀÚ·á°£ÀÇ »ó°ü¼ºÀ» Á¶»çÇÑ °á°ú, Àϰ­¿ì·®Àº ´ç ÇØÀÇ ¿ùÆò±Õ °­¿ì·® ¹× Àüü ÀÚ·á±â°£ÀÇ ¿ùÆò±Õ °­¿ì·® ÀÚ·á¿Í ³ôÀº »ó°ü¼ºÀ» °¡Áö´Â °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ÀÌ ÀÚ·áµéÀ» Co-kriging ±â¹ý¿¡ Àû¿ëÇÑ °á°ú, °­¿ì °ø°£ ºÐÆ÷ÀÇ ÇØ¼® Á¤È®µµ°¡ Çâ»óµÇ¾úÀ¸¸ç, ÇâÈÄ ´Ù¸¥ ±â»ó »ó°ü ÀÎÀÚ¸¦ Àû¿ëÇÔÀ¸·Î¼­ °­¿ì·®À» ºñ·ÔÇÑ ¼ö¹®ÀÎÀÚÀÇ °ø°£ ºÐÆ÷ÇØ¼®»ó ¹®Á¦°¡ µÇ´Â ºÒÈ®½Ç¼ºÀ» ÁÙÀÏ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.
 
Ű¿öµå
Áö±¸Åë°èÇÐ;ÄÚÅ©¸®±ë;°ø°£ºÐÆ÷;geostatistical analysis;Co-kriging;spatial distribution;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.39, no.8, 2006³â, pp.669-676
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741444785)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿