¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.39, no.8, 2006³â, pp.659-668
Gumbel ºÐÆ÷ÇüÀ» ÀÌ¿ëÇÑ À§Çèµµ¿¡ °üÇÑ ºÒÈ®½Ç¼º ÇØ¼®
( A Study on Uncertainty of Risk of Failure Based on Gumbel Distribution )
ÇãÁØÇà;À̵¿Áø;½ÅÈ«ÁØ;³²¿ì¼º; ¿¬¼¼´ëÇб³ °ø°ú´ëÇÐ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;Colorado State University, Dept. of Civil Engrg.;¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
¼ö°ø±¸Á¶¹°ÀÇ À§Çèµµ¿¡ °üÇÑ ºÒÈ®½Ç¼ºÀ» °ËÅäÇϱâ À§ÇÏ¿© º» ¿¬±¸¿¡¼­´Â ºóµµÇؼ®À» ÅëÇÏ¿© ÃßÁ¤µÇ´Â ¼³°èÈ«¼ö·®ÀÇ ºÐ»ê·®À» °í·ÁÇÑ ºÒÈ®½Ç¼º ÇØ¼®À» ½Ç½ÃÇÏ¿´´Ù. Gumbel ºÐÆ÷ÇüÀ» ±âº» ºÐÆ÷ÇüÀ¸·Î °¡Á¤ÇÏ¿´À¸¸ç, ¸ð¸àÆ®¹ý, ÃÖ¿ìµµ¹ý, È®·ü°¡Á߸ð¸àÆ®¹ýÀ» ÀÌ¿ëÇÏ¿© °¢ ¸Å°³º¯¼ö ÃßÁ¤¹æ¹ýº°·Î ÃßÁ¤µÈ ¼³°èÈ«¼ö·®¿¡ ´ëÇÑ ÀÌ·ÐÀûÀÎ ºÐ»ê·®À» »êÁ¤ÇÏ¿´´Ù. ÀÌ·ÐÀûÀ¸·Î À¯µµÇÑ ºÐ»ê·®ÀÇ Æ¯¼ºÀ» ±Ô¸íÇϱâ À§ÇÏ¸ç ´Ù¾çÇÑ Ç¥º»Å©±â¿Í ¼³°è¿¬ÇÑ, ºñÃʰúÈ®·ü ¹× º¯µ¿°è¼öÁ¶°Ç¿¡ ´ëÇÏ¿© Monte-Carlo ¸ðÀǸ¦ ½Ç½ÃÇÏ°í °¢ ¸Å°³º¯¼ö ÃßÁ¤¹æ¹ýº° ºñ±³¸¦ ½Ç½ÃÇÏ¿´´Ù. ±× °á°ú È®·ü °¡Áß ¸ð¸àÆ®¹ýÀ» »ç¿ëÇÑ °æ¿ì À§Çèµµ¿¡ ´ëÇÏ¿© »ó´ëÀûÀ¸·Î °¡Àå ÀÛÀº »ó´ëÆíÀÇ ¹× »ó´ëÁ¦°ö±Ù¿ÀÂ÷¸¦ ¹ß»ý½ÃŰ´Â °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ÃÖ¿ìµµ¹ýÀÇ °æ¿ì¿¡´Â »ó´ëÀûÀ¸·Î Å« Ç¥º»ÀÚ·á¿¡ ´ëÇØ¼­´Â ¼³°è¿¬ÇÑ ¹× ºñÃʰúÈ®·ü¿¡ °ü°è¾øÀÌ ÀÛÀº »ó´ëÆíÀÇ ¹× »ó´ëÁ¦°ö±Ù¿ÀÂ÷¸¦ ¹ß»ý½ÃŰ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ¶ÇÇÑ ´Ù¾çÇÑ º¯µ¿°è¼ö Á¶°ÇÀº »ó´ëÆíÀÇ ¹× »ó´ëÁ¦°ö±Ù¿ÀÂ÷ÀÇ Ãø¸é¿¡¼­ °í·ÁÇÏ¿© º¼ ¶§ °ÅÀÇ ¿µÇâÀ» ÁÖÁö ¾Ê´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
The uncertainty of the risk of failure of hydraulic structures can be determined by estimating the variance of the risk of failure based on the methods of moments, probability weighted moments, and maximum likelihood assuming that the underlying model is the Gumbel distribution. In this paper, the variance of the risk of failure was derived. Monte Carlo simulation was peformed to verify the characteristics of the derived formulas for various sample size, design life, nonexceedance probability, and variation coefficient. As the results, PWM showed the smallest relative bias and root mean square error than the others while ML showed the smallest ones for relatively large sample siBes regardless of design life and nonexceedance probability. Also, it was found that variation coefficient does not effect on the relative bias and relative root mean square error.
 
Ű¿öµå
ºÒÈ®½Ç¼º;À§Çèµµ;ºÐ»ê;¸ðÀǽÇÇè;Gumbel ºÐÆ÷Çü;uncertainty;risk of failure;variance;Monte Carlo simulation;Gumbel distribution;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.39, no.8, 2006³â, pp.659-668
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741444645)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿