¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.39, no.9, 2006³â, pp.755-766
ÁßÀå±â À¯·®¿¹Ãø Çâ»óÀ» À§ÇÑ ±¹³» ±âÈÄÁ¤º¸ÀÇ ÀÌ¿ë
( Use of Climate Information for Improving Extended Streamflow Prediction in Korea )
ÀÌÀç°æ;±è¿µ¿À;Á¤´ëÀÏ; ¼­¿ï´ëÇб³ Áö±¸È¯°æ½Ã½ºÅÛ°øÇкÎ;¼­¿ï´ëÇб³ Áö±¸È¯°æ½Ã½ºÅÛ°øÇкÎ;¼­¿ï´ëÇб³ °øÇבּ¸¼Ò;
 
ÃÊ ·Ï
ÁßÀå±â ±âÈÄ¿¹º¸´Â ±âÈÄ¿ªÇиðÇüÀÇ ºñ¾àÀûÀÎ ¹ßÀü°ú ENSOµîÀÇ ±âÈÄÇö»ó¿¡ ´ëÇÑ ±Ô¸íÀ¸·Î, Àü¼¼°èÀûÀ¸·Î Á¤È®¼ºÀÌ Å©°Ô Çâ»óµÇ°í ÀÖ¾î ÁßÀå±â À¯·®¿¹ÃøÀÇ Áß¿äÇÑ ½Ç¸¶¸®°¡ µÇ°í ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â ¿ì¼± ÁßÀå±â À¯·®¿¹Ãø Çâ»óÀ» À§ÇÏ¿© ±¹³»¿¡¼­ »ç¿ë °¡´ÉÇÑ ±âÈÄÁ¤º¸, Áï ¿ù°£»ê¾÷±â»óÁ¤º¸¿Í GDAPS(Global Data Assimilation and Prediction System)¸¦ Á¶»çÇÏ°í ±× Á¤È®¼ºÀ» Æò°¡ÇÏ¿´´Ù. ¿ù°£»ê¾÷±â»óÁ¤º¸¿Í GDAPSÀÇ ¼øº° ¿¹º¸¿¡¼­ ¸ðµÎ Ãʺ¸¿¹Ãøº¸´Ù Á¤È®ÇÏ¿´°í ƯÈ÷ °¥¼ö±âº¸´Ù´Â È«¼ö±â¿¡ Á¤È®¼ºÀÌ ´õ ³ô°Ô ³ª¿Í ÀÌ ±â°£¿¡´Â ±âÈÄ¿¹º¸·Î¼­ À¯È¿ÇÔÀ» È®ÀÎÇÏ¿´´Ù. ´ÙÀ½À¸·Î ±âÈÄ¿¹º¸¸¦ ÀÌ¿ëÇÏ¿© ÃæÁÖ´ï À¯¿ª¿¡ ´ëÇÏ¿© À¯·®¿¹ÃøÀ» ¼öÇàÇÏ¿´´Ù. ¿ù°£»ê¾÷±â»óÁ¤º¸¿¡¼­´Â Àüü ½Ã³ª¸®¿À, ±³ÁýÇÕ ½Ã³ª¸®¿À, ÇÕÁýÇÕ ½Ã³ª¸®¿À·Î ³ª´©¾î À¯·®¿¹Ãø¿¡ Àû¿ëÇÏ¿´´Ù. ¼¼ °æ¿ì ¸ðµÎ Ãʺ¸¿¹Ãøº¸´Ù Æò±Õ¿¹ÃøÁ¡¼ö°¡ ³ô¾Æ ¿¹ÃøÀ¸·Î¼­ À¯È¿ÇÏ¿´À¸¸ç, ƯÈ÷ È«¼ö±â¿¡ ±³ÁýÇÕ ¹× ÇÕÁýÇÕ ½Ã³ª¸®¿ÀÀÇ Æò±Õ¿¹ÃøÁ¡¼ö°¡ Àüü ½Ã³ª¸®¿Àº¸´Ù ³ô°Ô ³ªÅ¸³µ´Ù. GDAPS¸¦ ÀÌ¿ëÇÑ ¼øº° À¯·®¿¹ÃøÀÇ °æ¿ì¿¡µµ ¿ª½Ã °¥¼ö±âº¸´Ù È«¼Ò±â¿¡ ´õ ³ôÀº Á¤È®¼ºÀÌ ³ªÅ¸³µ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â È«¼ö±â¿¡ º¸´Ù Á¤È®ÇÑ ±âÈÄ¿¹º¸¸¦ »ç¿ëÇÏ¿© ±â»óÇÐÀû ºÒÈ®½Ç¼ºÀ» ÁÙÀÎ´Ù¸é ¿ù À¯·®¿¹ÃøÀÇ Á¤È®¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ½À» Áõ¸íÇÏ¿´´Ù.
Since the accuracy of climate forecast information has improved from better understanding of the climatic system, particularly, from the better understanding of ENSO and the improvement in meteorological models, the forecasted climate information is becoming the important clue for streamflow prediction. This study investigated the available climate forecast information to improve the extended streamflow prediction in Korea, such as MIMI(Monthly Industrial Meteorological Information) and GDAPS(Global Data Assimilation and Prediction) and measured their accuracies. Both MIMI and the 10-day forecast of GDAPS were superior to a naive forecasts and peformed better for the flood season than for the dry season, thus it was proved that such climate forecasts would be valuable for the flood season. This study then forecasted the monthly inflows to Chungju Dam by using MIMI and GDAPS. For MIMI, we compared three cases: All, Intersection, Union. The accuracies of all three cases are better than the naive forecast and especially, Extended Streamflow Predictions(ESPs) with the Intersection and with Union scenarios were superior to that with the All scenarios for the flood season. For GDAPS, the 10-day ahead streamflow prediction also has the better accuracy for the flood season than for the dry season. Therefore, this study proved that using the climate information such as MIMI and GDAPS to reduce the meteorologic uncertainty can improve the accuracy of the extended streamflow prediction for the flood season.
 
Ű¿öµå
±âÈÄÁ¤º¸;¿ù°£»ê¾÷±â»óÁ¤º¸;¾Ó»óºí À¯·®¿¹Ãø;¿¹ÃøÀÇ Á¤È®¼º;climate information;monthly industrial meteorology information;GDAPS;ensemble streamflow prediction;forecasting accuracy;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.39, no.9, 2006³â, pp.755-766
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741700288)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿