¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.41, no.9, 2008³â, pp.959-967
Ä«¿À½º¸¦ ÀÌ¿ëÇÑ ÀÏ °­¿ìÀÚ·áÀÇ ½Ã°£Àû ºÐÇØ
( Chaotic Disaggregation of Daily Rainfall Time Series )
°æ¹Î¼ö;º§¸®½Ã¹ÙÄí¸¶¸£;±èÇü¼ö;±èº´½Ä; ÀÎÇÏ´ëÇб³ »çȸ±â¹Ý½Ã½ºÅÛ°øÇкÎ;;ÀÎÇÏ´ëÇб³ »çȸ±â¹Ý½Ã½ºÅÛ°øÇкÎ;Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ¼öÀÚ¿ø¿¬±¸½Ç;
 
ÃÊ ·Ï
ºÐÇØ±â¹ýÀº ÀÏ ´ÜÀ§ °­¼ö½Ã°è¿­ ÀڷḦ ½Ã°£´ÜÀ§·Î ºÐÇØÇÏ´Â µ¥ ÁÖ·Î »ç¿ëµÇ°í ÀÖÀ¸¸ç, ½Ã´ÜÀ§ ÀÚ·á´Â È«¼ö¿¹ÃøÀ» À§ÇÏ¿© ÁÖ¿äÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ´Ù. ±×·¯³ª ÇöÀç±îÁö Á¦½ÃµÈ ´ëºÎºÐÀÇ ºÐÇØ±â¼úÀº °­¿ìµ¥ÀÌÅͰ¡ Ãß°èÇÐÀû Ư¼ºÀ» °¡Áö°í ÀÖ´Ù´Â ±âº» °¡Á¤À» ÀüÁ¦·Î Çϰí Àֱ⠶§¹®¿¡ ¸ðÇüÀ» ±¸¼ºÇϴµ¥ À־ °­¿ìÀÚ·áÀÇ ¹°¸®Àû Ư¼ºÀ» ¹Ý¿µÇÏ´Â µ¥´Â ÇѰ踦 º¸À̰í ÀÖ´Ù. ÀÌ¿¡ º» ¿¬±¸¿¡¼­´Â °­¿ìÀڷḦ °¢±â ´Ù¸¥ ÇØ»óµµ·Î º¯È¯Çϴµ¥ µû¸¥ °¡ÁßÄ¡ÀÇ µ¿¿ªÇÐÀû °Åµ¿ÀÌ Ä«¿À½º Ư¼ºÀ» º¸ÀÌ´ÂÁö¿Í Ä«¿À½ºÀû ºÐÇØ°¡ °¡´ÉÇÑÁö¸¦ ºñ¼±ÇüÀÇ È®Á¤·ÐÀû ¹æ¹ý(Ä«¿À½ºÀÌ·Ð)À» ÀÌ¿ëÇÏ¿© ±Ô¸íÇÏ´Â ¹æ¾ÈÀ» ¼Ò°³ÇÏ¿´´Ù. ¿ì¼±, ±â»óû »êÇÏ ¼­¿ïÁöÁ¡À» ´ë»óÀ¸·Î 24h-12h, 12h-6h, 6h-3hÀ¸·Î ÇØ»óµµ¸¦ º¯È¯Çϴµ¥ µû¸¥ °¡ÁßÄ¡¸¦ °è»êÇÏ¿© »ç¿ëÇÏ¿´´Ù. °¡ÁßÄ¡ ½Ã°è¿­ÀÚ·áÀÇ Ä«¿À½º Ư¼ºÀ» ±Ô¸íÇÏ´Â µ¥´Â »ó°üÂ÷¿ø¹æ¹ýÀ» ÀÌ¿ëÇÏ¿´À¸¸ç, ºÎºÐ±Ù»çÈ­ ±â¹ýÀ» ÀÌ¿ëÇÏ¿© °­¿ì¸¦ ºÐÇØÇÏ¿´´Ù. ¼­¿ï ÁöÁ¡ÀÇ ¸ðµç ÇØ»óµµ º¯È¯¿¡ µû¸¥ °¡ÁßÄ¡´Â ÀúÂ÷¿øÀÇ »ó°ü Â÷¼ö¸¦ °¡Áö´Â Ä«¿À½º Ư¼ºÀ» º¸ÀÓÀ» È®ÀÎÇÏ¿´À¸¸ç, ºÐÇØ°á°ú ½ÇÁ¦ °üÃøÄ¡¿Í À¯»çÇÑ °ªÀ» º¸ÀÓÀ» È®ÀÎÇÏ¿´´Ù(³ôÀº »ó°ü°è¼ö¿Í ÀÛÀº Æò±ÕÁ¦°ö±Ù¿ÀÂ÷¸¦ º¸ÀÓ). ¶ÇÇÑ °­¿ìÀÇ ÀϹÝÀûÀÎ °æÇ⼺(ÃÑ·®, °­¿ìÀÇ ¹ß»ý ½ÃÁ¡)Àº º¸Á¸µÇ³ª ±Ø°ªÀÇ °æ¿ì ´ëºÎºÐ °ú¼Ò ÃßÁ¤µÊÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.
Disaggregation techniques are widely used to transform observed daily rainfall values into hourly ones, which serve as important inputs for flood forecasting purposes. However, an important limitation with most of the existing disaggregation techniques is that they treat the rainfall process as a realization of a stochastic process, thus raising questions on the lack of connection between the structure of the models on one hand and the underlying physics of the rainfall process on the other. The present study introduces a nonlinear deterministic (and specifically chaotic) framework to study the dynamic characteristics of rainfall distributions across different temporal scales (i.e. weights between scales), and thus the possibility of rainfall disaggregation. Rainfall data from the Seoul station (recorded by the Korea Meteorological Administration) are considered for the present investigation, and weights between only successively doubled resolutions (i.e., 24-hr to 12-hr, 12-hr to 6-hr, 6-hr to 3-hr) are analyzed. The correlation dimension method is employed to investigate the presence of chaotic behavior in the time series of weights, and a local approximation technique is employed for rainfall disaggregation. The results indicate the presence of chaotic behavior in the dynamics of weights between the successively doubled scales studied. The modeled (disaggregated) rainfall values are found to be in good agreement with the observed ones in their overall matching (e.g. correlation coefficient and low mean square error). While the general trend (rainfall amount and time of occurrence) is clearly captured, an underestimation of the maximum values are found.
 
Ű¿öµå
°­¿ìºÐÇØ;Ä«¿À½º;°¡ÁßÄ¡;»ó°üÂ÷¿ø;ºÎºÐ±Ù»çÈ­±â¹ý;rainfall disaggregation;chaos;weights;correlation dimension;local approximation;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.41, no.9, 2008³â, pp.959-967
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200828955287962)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿