¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.1, 1999³â, pp.3-13
½Å°æ¸Á ±â¹ýÀ» ÀÌ¿ëÇÑ ¿¬Æò±Õ °­¿ì·®ÀÇ °ø°£ ÇØ¼®
( Spatial Analysis for Mean Annual Precipitation Based On Neural Networks )
½ÅÇö¼®;¹Ú¹«Á¾; ºÎ»ê´ëÇб³ Åä¸ñ°øÇаú;ÇѼ­´ëÇб³ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â °ø°£ ºÐÆ÷ÀÇ ÇØ¼®À» À§ÇÏ¿© ÀϹÝÀûÀ¸·Î »ç¿ëµÇ¾î ¿À´ø Thiessen ¶Ç´Â Kriging ¹ýµéÀ» ´ëüÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¸ðÇüÀÎ SANN(Spatial-Analysis Neural-Network)À» ¼Ò°³ÇÑ´Ù. ÀÌ ¸ðµ¨Àº ½Å°æ¸Á ±â¹ýÀ» ÀÌ¿ëÇÑ ºñ¸Å°³ º¯¼ö¹ýÀÇ ÀÏÁ¾À¸·Î ¹ÌÃøÁ¤ ±âÁ¡ÀÇ Æò±Õ°ª »Ó¸¸ ¾Æ´Ï¶ó ºÐ»ê, ¿Öµµ µîÀÇ °íÂ÷ Åë°èÄ¡¸¦ Á¦°øÇÏ¿© ÁØ´Ù. ¶ÇÇÑ ¾î¶² ±âÁ¡¿¡¼­ÀÇ °ø°£º¯¼öÀÇ °ªÀÌ ±× ½É°¢µµ¿¡ µû¸¥ ¹Ì¸® ÁöÁ¤µÈ ¿©·¯ ºÐ·ùµé Áß °¢°¢ÀÇ ºÐ·ù¿¡ ¼ÓÇÒ È®·ü°ª°ú Àüü °ø°£À» °¢ ºÐ·ù¿¡ µû¶ó °¡Àå ÃÖÀûÇÏ°Ô ºÐ·ù°æÁ¦(class boundary)¸¦ ¼±Á¤ÇÏ¿©ÁÙ ¼ö ÀÖ´Â Bayesian °è±ÞºÐ·ù±â(Classifier)¸¦ Á¦°øÇÏ´Â ÀÇ»ç°áÁ¤(decision-making) ¿ªÇÒµµ ¼öÇàÇÒ ¼ö ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â Á¦¾ÈµÈ SANN¸ðÇüÀÇ ¿Ü»ð±â(interpolator)¸¦ »ç¿ëÇÏ¿© °üÃø ±âÁ¡ÀÇ ¿¬Æò±Õ °­¿ì·®À» ´ë»ó À¯¿ª ÀüüÀÇ °ø°£ÀûÀ¸·Î ºÐÆ÷½ÃŰ°í ¶ÇÇÑ °¢ ÁöÁ¡ÀÇ ¿¹Ãø ¿À·ù¸¦ »êÁ¤Çϸç, Bayesian ºÐ·ù±â¸¦ »ç¿ëÇÏ¿© ´ë»óÀ¯¿ªÀ» °¡Àå ÀûÀýÇÏ°Ô °ÇÁ¶, º¸Åë, ½ÀÀ± Áö¿ªÀ¸·Î ºÐ·ùÇÏ´Â ¹æ¹ýÀ» Á¦½ÃÇÏ¿© º»´Ù. º» ¿¬±¸¿¡¼­´Â 39°³ °­¿ì °èÃø ÁöÁ¡À» ÀÌ¿ëÇÏ¿© ¿ì¸®³ª¶óÀÇ ¿¬Æò±Õ °­¿ìÀÇ °ø°£ ÇØ¼®¿¡ ÀÀ¿ëÇÏ¿© º»´Ù. °á°úÀûÀ¸·Î ¿¬Æò±Õ °­¿ì·®ÀÇ °ø°£ ºÐÆ÷, Ç¥ÁØÆíÂ÷, ±×¸®°í È®·üµµ¸¦ ¾ò¾ú´Ù. ´õºÒ¾î ¿ì¸®³ª¶ó Àü¿ªÀ» °ÇÁ¶, º¸Åë, ½ÀÀ± Áö¿ªÀ¸·Î ºÐ·ùÇÏ¿© º¸¾Ò´Ù.
In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.
 
Ű¿öµå
°ø°£ºÐ¼®;¿¬Æò±Õ °­¼ö·®;½Å°æ¸Á;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.1, 1999³â, pp.3-13
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920062924)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿