¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.32, no.1, 1999³â, pp.15-29
½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ ¿ì¸®³ª¶óÀÇ ½Ã°ø°£Àû °¡¹³ÀÇ ÇØ¼®
( Spatial-Temporal Drought Analysis of South Korea Based On Neural Networks )
½ÅÇö¼®;¹Ú¹«Á¾; ºÎ»ê´ëÇб³ Åä¸ñ°øÇаú;;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â °ø°£ÀûÀ¸·Î ºÐÆ÷µÇ¾î ÀÖ´Â ¿¬°­¿ì·® ÀڷḦ ÀÌ¿ëÇÑ Áö¿ª ±â»óÇÐÀûÀÎ °¡¹³À» Á¤ÀÇÇϰí ÇØ¼®ÇÏ´Â ¸ðÇüÀ» Á¦½ÃÇÏ¿´´Ù. ºñ¼±Çü. ºñ¸Å°³º¯¼ö¹ý¿¡ ±âÃÊÇÑ °ø°£ ÇØ¼® ½Å°æ¸Á(Spatial Analysis Neural Network; SANN)¸ðÇüÀ» ÀÌ¿ëÇÏ¿©, °¢ ³â¿¡ ´ëÇÏ¿© °ø°£ÀÇ ÀÓÀÇ Á¡¿¡¼­ÀÇ ±Ø½É, ½É °æ½É, ¹× ºñ °¡¹³ È®·üÀ» Àü ´ë»ó Áö¿ª¿¡ ´ëÇÏ¿© »êÃâÀ» ÅëÇÏ¿© °¡¹³È®·üµµ¸¦ ÀÛ¼ºÇϸç, Bayesian °¡¹³ ½Éµµ Áö¼ö(BDSI)¸¦ ÅëÇÏ¿© Àü ´ë»ó Áö¿ªÀ» °¡Àå ÀûÀûÇÏ°Ô ±Ø½É, ½É, °æ½É, ºñ °¡¹³ Áö¿ªÀ¸·Î ºÐ·ùÇÏ´Â ¹æ¹ýÀ» Á¦½ÃÇÏ¿´´Ù. ¶ÇÇÑ, °¢ ³âÀÇ ´ëÇ¥ÀûÀÎ °¡¹³ÀÇ ÇüŸ¦ Á¦½ÃÇÏ¿© ÁÙ ¼ö ÀÖ´Â Áö¿ª °¡¹³ È®·ü°ú Áö¿ª °¡¹³ È®·ü Áö¼ö¸¦ ¼Ò°³ÇÏ¿´´Ù. ÀÌ ¸ðµç ½Ã°ø°£Àû °¡¹³ ÇØ¼®ÀÇ ¹æ¹ýÀº ½ÇÁ¦·Î ¿ì¸®³ª¶ó(³²ÇÑ) Àü¿ª¿¡ ´ëÇÏ¿© ½Ç½ÃÇÏ¿©, °ú°Å 1967³âºÎÅÍ 1996³â ±îÁöÀÇ °ø°£ÀûÀÌ°í ½Ã°£ÀûÀÎ °¡¹³ÀÇ ¹ß»ý ÇöȲ°ú ±× Ư¡À» Á¶»ç ÇÏ¿´´Ù. º» ¿¬±¸´Â ¿ì¸®³ª¶ó Àå±â ¼öÀÚ¿ø °³¹ß ¹× À¯¿ª °ü¸®¸¦ À§ÇÑ °ø°£ÀûÀÌ°íµµ ½Ã°£ÀûÀÎ °¡¹³ Á¤º¸¸¦ Á¦°øÇÏ¿´´Ù´Â µ¥ ±× ÀÇÀǰ¡ ÀÖÀ» °ÍÀÌ´Ù.
A new methodology to analyze and quantify regional meteorological drought based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network (SANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought severities. In addition, to estimate the regional drought severity for the entire region, regional extreme, severe, mild, and non drought probabilities which are the areal averages of point drought probabilities over the region has been computed and applied. In this study, the proposed methodology has been applied to analyze the regional drought of South Korea during 1967-1996 years. The drought severity for the whole South Korea was defined spatially at each year and each year was classified in a drought severity criterion. The results may be useful for water manager to understand the South Korean drought with respect to the spatial and temporal variation.
 
Ű¿öµå
°¡¹³;½Å°æ¸Á;°¡¹³ È®·ü;Bayesian °¡¹³ ½Éµµ Áö¼ö;³²ÇÑ;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.32, no.1, 1999³â, pp.15-29
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199911920062932)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿