¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.42, no.11, 2009³â, pp.1017-1028
Neyman-Scott ±¸Çü ÆÞ½º¸ðÇüÀÇ Á÷Á¢ÀûÀÎ ¸Å°³º¯¼ö ÃßÁ¤¿¬±¸
( Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model )
Á¤Ã¢»ï; Àδö´ëÇÐ Åä¸ñȯ°æ¼³°è°øÇаú;
 
ÃÊ ·Ï
SRPM (Neyman-Scott Rectangular Pulse Model)Àº ¼ö¹®Çко߿¡¼­ ³Î¸® ¾²À̰í ÀÖ´Â °­¼ö»ý¼º¸ðÇüÀÌ´Ù. NSRPMÀ» ±¸ÃàÇϱâ À§Çؼ­´Â ÃÑ 5°³ÀÇ ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÏ¿©¾ß ÇÑ´Ù. ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ¸ð¸àÆ®¸¦ ÀÌ¿ëÇÏ¿© ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÒ °æ¿ì, »ç¿ëµÇ´Â ¸ñÀûÇÔ¼öÀÇ Áõ°¡¿¡ µû¶ó ÃßÁ¤µÇ´Â ¸Å°³º¯¼öÀÇ °á°ú°¡ ÆòÅºÇØÁö°í ¸ñÀûÇÔ¼ö¸¦ Ãß°¡Çϰųª Á¶Á¤Çϱâ À§Çؼ­´Â º¹ÀâÇÑ ¼ö½ÄÀ» ´Ù½Ã °è»êÇØ¾ß Çϸç ÃßÁ¤µÈ ¸Å°³º¯¼ö°¡ ¹«ÀÛÀ§º¯¼ö »ý¼º ¸ðÇü¿¡ µû¶ó »óÀÌÇÑ °á°ú¸¦ ³ªÅ¸³»´Â ´ÜÁ¡ÀÌ ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â Á÷Á¢ÀûÀÎ ¸Å°³º¯¼ö ÃßÁ¤¹æ¹ýÀ» Á¦½ÃÇÏ¿© ¸ð¸àÆ®¸¦ ÀÌ¿ëÇÑ ¸Å°³º¯¼ö ÃßÁ¤ÀÇ ´ÜÁ¡À» ±Øº¹ÇϰíÀÚ ÇÏ¿´´Ù. Á÷Á¢ÀûÀÎ ÃßÁ¤¹æ¹ýÀ» Àû¿ëÇϱâ À§ÇÏ¿© NSRPMÀÇ °­¼ö »ý¼º °³¼ö¿¡ µû¸¥ Åë°èÄ¡ º¯È­¸¦ ¸ðÀÇÇÏ¿© Á÷Á¢ÀûÀÎ ÃßÁ¤À» À§ÇÑ ¸ðÇüÀ» ±¸ÃàÇÏ¿´´Ù. ±â»óû ûÁÖ Áö»ó°üÃø¼ÒÀÇ °üÃø °­¼ö ÀڷḦ »ç¿ëÇÏ¿© ¸ð¸àÆ®¸¦ ÀÌ¿ëÇÏ¿© ÃßÁ¤µÈ ¸Å°³º¯¼ö¿Í Á÷Á¢ÀûÀÎ ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÏ¿´´Ù. ÃÑ 4 °³ÀÇ ¹«ÀÛÀ§º¯¼ö ¾Ë°í¸®ÁòÀ» Àû¿ëÇÏ¿© °­¼ö¸¦ »ý¼ºÇÏ¿´°í, °üÃø °­¼ö ½Ã°è¿­À» ÀÌ¿ëÇÏ¿© Á¤È®µµ¸¦ ºñ±³ÇÏ¿´´Ù. ºñ±³ °á°ú Á÷Á¢ÀûÀÎ ÃßÁ¤¹æ¹ýÀÌ ¸ð¸àÆ®¸¦ ÀÌ¿ëÇÑ ¸Å°³º¯¼ö ÃßÁ¤¹æ¹ýº¸´Ù ¾ÈÁ¤ÀûÀÌ°í ³ôÀº Á¤È®µµ¸¦ º¸ÀÌ´Â ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
NSRPM (Neyman-Scott Rectangular Pulse Model) is one of the common model for generating future precipitation time series in stochastical hydrology. There are 5 parameters to compose the NSRPM model for generating precipitation time series. Generally parameter estimation using moment has some problems related with increased objective functions and shows different results in accordance with random variable generating models. In this study, direct parameter estimation method was proposed to cover with disadvantages of parameter estimation using moment. To apply the direct parameter estimation, generating stochastical data variance in accordance with numbers of precipitation events of NSRPM was done. Both kinds of methods were applied at the Cheongju gauge station data. Precipitation time series were generated using 4 different random variable generator, and compared with observed time series to check the accuracies. As a results, direct method showed more stable and better results.
 
Ű¿öµå
°­¼ö»ý¼º¸ðÇü;Á÷Á¢Àû ¸Å°³º¯¼ö ÃßÁ¤;NSRPM;generating future precipitation time series;direct parameter estimation;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.42, no.11, 2009³â, pp.1017-1028
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200903538424228)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿