¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.42, no.7, 2009³â, pp.525-535
°³º°°ü·Î Á¤ÀÇ ¹æ¹ýÀ» ÀÌ¿ëÇÑ »ó¼ö°ü·Î ÆÄ¼ÕÀ² ¸ðÇüÈ­ ¹× °æÁ¦Àû ±³Ã¼½Ã±âÀÇ »êÁ¤
( Modeling of the Failure Rates and Estimation of the Economical Replacement Time of Water Mains Based on an Individual Pipe Identification Method )
¹Ú¼ö¿Ï;ÀÌÇü¼®;¹èöȣ;±è±Ô¸®; ºÎ»ê´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;Çѱ¹¼öÀÚ¿ø°ø»ç ¹Ð¾ç´ï°ü¸®´Ü;K-water ¼öÀÚ¿ø¿¬±¸¿ø;ºÎ»ê´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â »ó¼ö°ü¸Á¿¡¼­ °³º°ÀûÀ¸·Î ³ëÈĵµ°¡ ½ÉÇÏ¿© °³·®ÀÌ ÇÊ¿äÇÑ ±¸°£À» º¸´Ù Á¤È®ÇÏ°Ô ±¸ºÐÇϱâ À§ÇØ »õ·Î¿î °³º°°ü·Î Á¤ÀÇ ¹æ¹ýÀÌ °³¹ßµÇ¾ú´Ù. ÀûÀýÇÑ °ü·Î ÃÖ¼Ò±¸¼º¼ººÐ ±æÀ̸¦ °áÁ¤Çϱâ À§ÇÏ¿© ¿©·¯ °¡Áö °ü·Î ÃÖ¼Ò±¸¼º¼ººÐ ±æÀÌ¿¡ ´ëÇÑ Æò±Õ ´©ÀûÆÄ¼ÕȽ¼ö°æ»ç¼±ÀÇ ºÐ»ê°ªÀ» ºñ±³ÇÏ¿© °¡Àå Å« ºÐ»ê°ªÀ» ³ªÅ¸³»´Â °ü·Î ÃÖ¼Ò±¸¼º¼ººÐ ±æÀÌÀÎ 4 m ¸¦ ¿¬±¸´ë»ó Áö¿ªÀÇ »ó¼ö°ü¸Á¿¡ Àû¿ëÇÏ¿´À¸¸ç °ü·Î ID´Â 39°³·Î ±¸ºÐµÇ¾îÁ³´Ù. °ü·ÎÀÇ °æÁ¦Àû ÃÖÀû±³Ã¼ ½Ã±â´Â ÇѰèÆÄ¼ÕÀ²°ú °ü·ÎÀÇ ÆÄ¼Õ°æÇâ¸ðÇüÀ» ÀÌ¿ëÇÏ¿© °áÁ¤µÇ¾ú´Âµ¥, °¢ °ü·Î ID¿¡ ´ëÇÏ¿© °ü·ÎÀÇ ¼±ÇüÀû ÆÄ¼Õ°æÇâ, Áö¼öÀû ÆÄ¼Õ°æÇâ ¶Ç´Â ¼±Çü°ú Áö¼öÇü »çÀÌ¿¡ ÀÖ´Â ÆÄ¼Õ°æÇâ ¸ðµÎ¿¡ Àû¿ëµÉ ¼ö ÀÖ´Â General Pipe Break Prediction Model(Park and Loganathan, 2002)°ú ¼öÁ¤µÈ ½Ã°£Ã´µµ¸¦ ÀÌ¿ëÇÑ ROCOF(Park et al., 2007)¸¦ Àû¿ëÇÏ¿© ¿¬±¸´ë»ó »ó¼ö°ü¸ÁÀÇ ÃÖÀû±³Ã¼½Ã±â¸¦ »êÁ¤ ¹× ºÐ¼®ÇÏ¿´´Ù. ROCOF ¸ðÇüÈ­ °úÁ¤¿¡¼­ ´ë¼ö-¼±Çü°ú ¿ÍÀ̺í ROCOF¸¦ Àû¿ë ÈÄ ÃÖ´ë·Î±×¿ìµµ ÃßÁ¤°ªÀ» ºñ±³ÇÏ¿© ÃÖ´ë·Î±×¿ìµµ°¡ Å« °ªÀ» °¡Áö´Â ROCOF¸¦ °¢ °ü·Î IDÀÇ ROCOF·Î »ç¿ëÇÏ¿´´Ù. °ü·ÎÆÄ¼ÕÀ¸·Î ÀÎÇÑ »çȸÀû ºñ¿ëÀÌ °ü·ÎÀÇ ÃÖÀû±³Ã¼½Ã±â¿¡ ¹ÌÄ¡´Â ¿µÇâµµ ºÐ¼®µÇ¾ú´Ù.
In this paper a heuristic method for identifying individual pipes in water pipe networks to determine specific sections of the pipes that need to be replaced due to deterioration. An appropriate minimum pipe length is determined by selecting the pipe length that has the greatest variance of the average cumulative break number slopes among the various pipe lengths used. As a result, the minimum pipe length for the case study water network is determined as 4 m and a total of 39 individual pipe IDs are obtained. The economically optimal replacement times of the individual pipe IDs are estimated by using the threshold break rate of an individual pipe ID and the pipe break trends models for which the General Pipe Break Prediction Model(Park and Loganathan, 2002) that can incorporate the linear, exponential, and in-between of the linear and exponetial failure trends and the ROCOFs based on the modified time scale(Park et al., 2007) are used. The maximum log-likelihoods of the log-linear ROCOF and Weibull ROCOF estimated for the break data of a pipe are compared and the ROCOF that has a greater likelihood is selected for the pipe of interest. The effects of the social costs of a pipe break on the optimal replacement time are also discussed.
 
Ű¿öµå
³ëÈĵµ;°³º°°ü·Î;ÆÄ¼Õ°æÇâ;ÆÄ¼ÕÀ²;ÃÖÀû±³Ã¼;deterioration;break rate;break trend;individual pipe;optimal replacement time;ROCOF;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.42, no.7, 2009³â, pp.525-535
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200922335514178)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿