|
|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.41, no.10, 2008³â, pp.969-982
|
SWATÀ» ÀÌ¿ëÇÑ ±âÈĺ¯ÈÀÇ ¼ö¹®ÇÐÀû ¿µÇâÆò°¡¸¦ À§ÇÑ Proxy-basin Differential Split-Sampling ¹× Blind-Validation Å×½ºÆ® Àû¿ë
( Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT ) |
| ¼Õ°æÈ£;±èÁ¤°ï; Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¿ø;Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¿ø;
|
|
|
 |
|
| |
| ÃÊ ·Ï |
| ¼ö¹® ¸ðÇüÀÇ ¹ßÀüÀÌ °ÅµìµÇ¸é¼, ÃÖÀû ¼öÀÚ¿øÀÇ °ü¸®¸¦ À§ÇÑ ÀûÁ¤ÇÑ ¹æ¹ýÀ¸·Î Àνĵǰí ÀÖ´Ù. ƯÈ÷ ¼öÀÚ¿ø°ü¸®¿¡ ÀÖ¾î¼ ÅäÁöÀÌ¿ë º¯È ¹× ±âÈÄ º¯È¿¡ µû¸¥ ¼ö¹®ÇÐÀû ¿µÇâ Æò°¡¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù. ÀÌ ¿µÇâµéÀ» Æò°¡Çϱâ À§Çؼ´Â ¿ì¼± Àû¿ëµÈ ¼ö¹® ¸ðÇüÀÇ °·ÂÇÑ °ËÁõÀÌ ¿ä±¸µÈ´Ù. ±×¸®°í ¼ö¹®¸ðÇüÀÇ Àû¿ë ½Ã ¸¹Àº ÁöÁ¡¿¡¼ À¯·®ÀÌ ¹Ì °èÃø µÇ¾ú°Å³ª, ÃøÁ¤µÈ ÀڷḶÀú ¸¹Àº ¿ÀÂ÷¸¦ Æ÷ÇÔÇϰí ÀÖ´Â °æ¿ì°¡ Àֱ⠶§¹®¿¡ ¸ðÇüÀÇ ¿¹Ãø °ªÀ» ÀÌ¿ëÇÏ¿© ¼ö¹®ºÐ¼®ÀÌ ÀÌ·ç¾îÁö´Â °æ¿ì°¡ ¸¹´Ù. ÀÌ¿Í °°Àº °æ¿ì¿¡´Â ¸ðÇü °á°ú °ª¿¡ ´ëÇÑ ¿ÀÂ÷¸¦ ÁÙÀ̱â À§Çؼ °·ÂÇÑ ¸ðÇü °ËÁõ¹æ¹ýÀÌ ¿ä±¸µÈ´Ù. º» ¿¬±¸¿¡¼´Â ´Ù¸¥ ¹°¸®Àû Ư¼ºÀ» °¡Áø µÎ À¯¿ªÀ» ´ë»ó¿¡ ÃøÁ¤ À¯·®À» ÅëÇÑ SWAT ¸ðÇüÀÇ °ËÁõ ¹æ¹ýÀ» Áõ¸íÇϰíÀÚ ÇÏ¿´´Ù. À̸¦ À§ÇÏ¿©, ±Ý°À¯¿ª¿¡ À§Ä¡ÇÑ ¼ö¹®ÇÐÀû Ư¡ÀÌ »óÀÌÇÑ °©ÃµÀ¯¿ª°ú ¿ë´ãÀ¯¿ªÀ» ¼±Á¤ÇÏ¿©, ¸ÕÀú °©ÃµÀ¯¿ª¿¡ ´ëÇÏ¿© Á¤¹ÐÇÑ °Ë º¸Á¤À» ½Ç½ÃÇϰí, °©ÃµÀ¯¿ª¿¡¼ °³¹ßµÈ ¹æ¹ý·ÐÀ» ¿ë´ãÀ¯¿ª¿¡ Àû¿ëÇÏ¿© ¸ðÇüÀÇ °ËÁõÀ» ½ÃµµÇÏ¿´´Ù. ¿ë´ãÀ¯¿ª¿¡ ´ëÇÏ¿© SWAT ¸ðÇüÀ» Àû¿ëÇÑ °á°ú °¢ ¼ÒÀ¯ ¿ª¿¡¼ $R_{eff}$´Â 0.49$sim$0.85, $R^{2}$´Â 0.49$sim$0.84·Î ¸ðÇüÀº °üÂû °ªÀ» ¾çÈ£ÇÏ°Ô ¸ðÀÇÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ±×¸®°í ¸ðÀÇ °á°ú´Â ÷µÎÀ¯·® °ªÀº ´Ù¼Ò °ú¼Ò »êÁ¤ÇÏ¿´Áö¸¸, ÀüüÀûÀÎ °æÇâ ¹× ±âÀúÀ¯Ãâ·®À» Àß ¸ðÀÇÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. º» ¿¬±¸ÀÇ °á°ú·ÎºÎÅÍ SWAT¸ðÇüÀº ÇâÈÄ ÅäÁöÀÌ¿ëº¯È ¹× ±âÈĺ¯È¿¡ µû¸¥ À¯¿ªÆ¯¼ºº¯È ºÐ¼®¿¡ »ç¿ëµÉ ¼ö ÀÖÀ» °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù. ÇÏÁö¸¸, º» ¿¬±¸¿¡¼ »ç¿ëµÈ È¥¿ë±â¹ýÀÇ ½Å·Ú¼ºÀ» ³ôÀ̱â À§Çؼ´Â ÇâÈÄ Ãß°¡ÀûÀÎ À¯¿ª¿¡ ´ëÇÑ ¹æ¹ý·ÐÀÇ Å¸´ç¼º °ËÁõ ÀýÂ÷¸¦ °ÅÃÄ¾ß ÇÒ °ÍÀ¸·Î »ç·áµÈ´Ù. |
|
| As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins. |
| |
| Ű¿öµå |
| ±âÈĺ¯È;SWAT;Climate change;Proxy-basin differential split-sampling;Blind-validation; |
| |
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.41, no.10, 2008³â, pp.969-982
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200832450195770)
¾ð¾î : Çѱ¹¾î |
|
| ³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|
|