¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.42, no.3, 2009³â, pp.213-225
ºñÁ¤»ó¼º Markov Chain ModelÀ» ÀÌ¿ëÇÑ Åë°èÇÐÀû Downscaling ±â¹ý °³¹ß
( Development of Statistical Downscaling Model Using Nonstationary Markov Chain )
±ÇÇöÇÑ;±èº´½Ä; Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ¼öÀÚ¿ø¿¬±¸½Ç;Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ¼öÀÚ¿ø¿¬±¸½Ç;
 
ÃÊ ·Ï
±âÁ¸ÀÇ Á¤»ó¼º Markov Chain ¸ðÇüÀº ÀÚ·á ÀÚüÀÇ Markov Ư¼º¸¸À» °í·ÁÇÏ¿© ¸ðÀÇÇÏ´Â ±â¹ýÀ¸·Î¼­ ¼öÀÚ¿ø ¼³°è¿¡¼­ ¿©·¯ °¡Áö ¸ñÀûÀ¸·Î ÀÌ¿ëµÇ¾î Áö°í ÀÖ´Ù. ±×·¯³ª Àϰ­¼ö·®ÀÇ ÃµÀÌÈ®·ü ¹× ¸Å°³º¯¼ö µîÀÌ °ú°Å¿Í ÀÏÁ¤ÇÏ´Ù´Â Á¤»ó¼ºÀ» ±âº» °¡Á¤À¸·Î Çϱ⠶§¹®¿¡ Æò±ÕÀÇ º¯µ¿¼º µî°ú °°Àº ¿ÜºÎÃæ°ÝÀ» ¸ðÇü¿¡ Àû¿ëÇÒ ¼ö ¾ø´Ù. ÀÌ·¯ÇÑ °üÁ¡¿¡¼­ º» ¿¬±¸ÀÇ °¡Àå Å« ¸ñÀûÀº ±âÁ¸Àϰ­¼ö·® ¸ðÇüÀ» ¿ÜºÎÀÎÀÚ¸¦ ¹Þ¾ÆµéÀÏ ¼ö ÀÖ´Â ¸ðÇüÀ¸·Î °³¹ßÇÏ´Â °ÍÀÌ´Ù. Áï, Markov Chain ¸ðÇüÀÇ ¸Å°³º¯¼öÀΠõÀÌÈ®·ü°ú È®·üºÐÆ÷ÇüÀÇ ¸Å°³º¯¼ö µîÀ» ¿¬°áÇÔ¼ö(link function)¸¦ ÅëÇØ ¿ÜºÎÀÎÀÚ¿Í ¿¬µ¿Çϵµ·Ï ÇÏ¿´À¸¸ç Á¤ÁØ»ó°üºÐ¼®À» ÅëÇØ ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÏ¿´´Ù. °³¹ßµÈ ¸ðÇüÀ» ¼­¿ïÁö¹æ 1961-2006³â±îÁöÀÇ Àϰ­¼ö·® ÀڷḦ ´ë»óÀ¸·Î °ËÁõÇÏ´Â ÀýÂ÷¸¦ °¡Á³´Ù. ÃßÁ¤µÈ °á°ú¸¦ º¸¸é °èÀý°­¼ö·®ÀÇ Æ¯¼º»Ó¸¸ ¾Æ´Ï¶ó Àϰ­¼ö·®ÀÇ Æ¯¼º ¶ÇÇÑ ÀûÀýÇÏ°Ô ¸ðÀǵǴ °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­ °³¹ßµÈ ¸ðÇüÀº GCM ¿¹Ãø°á°ú¸¦ ÀÔ·ÂÀÚ·á·Î Ȱ¿ëÇÑ´Ù¸é Àϰ­¼ö°è¿­ÀÇ Àå´Ü±â ¸ðÀǸ¦ À§ÇÑ downscaling ±â¹ýÀ¸·Î »ç¿ëµÉ ¼ö ÀÖ´Ù. ¶ÇÇÑ, ±âÈĺ¯È­ ½Ã³ª¸®¿À°¡ ÀÔ·ÂÀÚ·á·Î ÀÌ¿ëµÈ´Ù¸é ±âÈĺ¯È­¿¡ µû¸¥ ¼öÀÚ¿ø ¿µÇâ Æò°¡¸¦ À§ÇÑ downscaling ±â¹ýÀ¸·Î Ȱ¿ëÀÌ °¡´ÉÇÒ °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.
 
Ű¿öµå
Markov Chain ¸ðÇü;°­¼ö;±âÈĺ¯È­;CCA;Markov Chain model;precipitation;climate change;downscaling;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.42, no.3, 2009³â, pp.213-225
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200910534718584)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿