¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.40, no.6, 2007³â, pp.431-446
°©Ãµ À¯¿ªÀÇ ÁöÇϼö À¯µ¿ Æò°¡
( Evaluation of Groundwater Flow for the Kap-cheon Basin )
È«¼ºÈÆ;±èÁ¤°ï; Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¿ø;Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¿ø;
 
ÃÊ ·Ï
ÁöÇϼö À¯µ¿ ¸ðµ¨¿¡ ¹Ý¿µµÇ´Â À¯¿ªÀÇ ¼ö¸®ÁöÁúÇÐÀû, ¼ö¹®ÇÐÀû Ư¡µéÀº ÁöÇϼö À¯µ¿ Ư¼º¿¡ ÁÖ¿äÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ÇöÀå Æ¯¼ºµéÀÌ´Ù. »ó±â Ư¡µéÀ» ÃÖ´ëÇÑ ¹Ý¿µÇϱâ À§ÇÏ¿© 438°³ÀÇ °üÁ¤ÀڷḦ Åä´ë·Î °©Ãµ À¯¿ª(À¯¿ª ¸éÀû$648.3km^2$)ÀÇ ´ë¼öÃþ ±¸Á¶ Ư¼ºÀ» ºÐ¼®Çϰí, 24°³ÀÇ ÇÏõ ÀڷḦ ÀÌ¿ëÇÏ¿© ÁöÇϼö À¯µ¿ ¸ðµ¨À» ±¸ÃàÇÏ¿´´Ù. ±×¸®°í °Ë º¸Á¤µÈ ÁØºÐÆ÷Çü À¯Ãâ¸ðÇü(SWAT)ÀÇ ¼ÒÀ¯¿ªº° ÁöÇϼö ÇԾ緮 °á°ú¸¦ 3Â÷¿ø ÁöÇϼö À¯µ¿ ¸ðµ¨(MODFLOW)°ú ¿¬°èÇÏ¿© °©Ãµ À¯¿ªÀÇ ±¤¿ª ÁöÇϼö À¯µ¿ Ư¼ºÀ» Æò°¡ÇÏ¿´´Ù. ¸ðÀÇµÈ ÁöÇϼöÀ§¿Í 86°³ ÁöÇϼö °üÃøÁ¤ÀÇ ÁöÇϼöÀ§ ºñ±³¿¡¼­ °áÁ¤°è¼ö´Â 0.99, À¯¿ª ÀüüÀÇ ¹°±³È¯·®ÀÇ »ó´ë¿ÀÂ÷À²ÀÌ ¾à 0.57%·Î °©Ãµ À¯¿ªÀÇ ÁöÇϼö À¯µ¿ Ư¼ºÀ» Àß ¹Ý¿µÇÏ¿´´Ù. °©Ãµ À¯¿ªÀÇ ÁöÇϼö´Â ÁöÇü ¹× ´ë¼öÃþ Ư¼º°ú ÇÏõÀÇ ¿µÇâ¿¡ ÀÇÇÏ¿© Àü¹ÝÀûÀ¸·Î À¯¿ª ³²ÂÊ¿¡¼­ ºÏÂÊÀ¸·Î À¯µ¿Çϴµ¥ »êÁö Áö¿ª¿¡ Á¸ÀçÇÏ´Â ÇÏõµéÀº ¼Õ½Ç°ú À̵æ ÇÏõÀÇ ÇüŸ¦ ¹Ýº¹ÇÏ´Â ¹Ý¸é, °©Ãµ Áß ÇÏ·ù ºÎºÐ°ú °©Ãµ-À¯µîõ ÇÕ·ù ºÎ±ÙÀº À̵æÇÏõÀÇ ÇüŸ¦ º¸À̰í ÀÖ´Ù. ±×¸®°í ¼ÒÀ¯¿ªº° ÁöÇϼö ¹°±³È¯·® ºÐ¼®ÇÑ °á°ú, »ó±â Áö¿ªÀ» Æ÷ÇÔÇÏ´Â ¼ÒÀ¯¿ªÀÇ ÇÏõ °ø±Þ¿øÀÌ ÇØ´ç À¯¿ªÀÇ ÁöÇϼö ÇԾ緮º¸´Ù ÁöÇϼö À¯µ¿ ü°è¿¡ µû¶ó Àα٠¼ÒÀ¯¿ª¿¡¼­ °ø±ÞµÇ´Â ÁöÇϼö À¯ÀÔ·® ºñÀ²ÀÌ ÈξÀ ³ôÀº °ÍÀ¸·Î ºÐ¼®µÇ¾ú´Ù. ¹Ý¸é À¯µîõ Áß »ó·ù Áö¿ªÀÇ ¼ÒÀ¯¿ªÀ» Á¦¿ÜÇÑ »êÁö Áö¿ªÀÇ °æ¿ì´Â ÇÏõ °ø±Þ¿øÀÌ ÁöÇϼö À¯µ¿ ü°è¿¡ ÀÇÇÑ À¯ÀÔ·®º¸´Ù ÇØ´ç À¯¿ª ³»¿¡¼­ °ø±ÞµÇ´Â ÁöÇϼö ÇԾ緮 ºñÀ²ÀÌ ³ôÀº °ÍÀ¸·Î ºÐ¼®µÇ¾ú´Ù. µû¶ó¼­ ÁöÇ¥¼ö¿Í ÁöÇϼöÀÇ »óÈ£ÀÛ¿ë ¹× ÇÏõ À¯Ãâ¿¡ ÁöÇϼö À¯µ¿ Ư¼ºÀÌ ÁÖ¿äÇÑ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î Æò°¡µÇ¾ú´Ù.ÀÓÀ» º¸¿©ÁØ´Ù.. ÃÖ´ë »öµµ ±ÕÀϵµ ÁöÇ¥(D)´Â $0.0025{pm}0.0008$À̾ú´Ù. ¶ÇÇÑ ±¹³» ½ÇÁ¤¿¡ ÀûÇÕÇÑ Áø´Ü¿ë Ç¥½ÃÀåÄ¡ÀÇ Á¤µµ°ü¸® °¡À̵å¶óÀÎ ¿¬±¸ °á°ú¸¦ Á¦½ÃÇÏ¿´´Ù. ¸ðµç Àμö°Ë»ç °á°ú´Â AAPM TG18 º¸°í¼­ ±âÁØ¿¡ Æ÷ÇԵǾî Áø´Ü ¸ñÀûÀ¸·Î »ç¿ëÇϱ⿡ ÀûÇÕÇÏ¿´´Ù. °á·ÐÀ¸·Î Àμö°Ë»ç´Â Ç¥½ÃÀåÄ¡°¡ Áø´Ü¿¡ »ç¿ëÇϱ⿡ ÀûÇÕÇÑ ¼º´ÉÀÓÀ» ¾Ë·ÁÁÙ »Ó¸¸ ¾Æ´Ï¶ó Á¤µµ°ü¸®ÀÇ °¡À̵å¶óÀÎ, ÃÖÀû ÆÇµ¶ ȯ°æ, ±×¸®°í Ç¥½ÃÀåÄ¡ÀÇ ±³Ã¼½Ã±â¸¦ °áÁ¤ÇÏ¿©ÁÖ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Ù.+ È¥ÆÄÃÊÁö°¡ 8,881kgÀ¸·Î °üÇà È¥ÆÄÃÊÁö(8,255kg)³ª ÀܵðÇü ÃÊÁ¾ + È¥ÆÄÃÊÁö(7,314kg)¿¡ ºñÇÏ¿© ³ôÀº °á°ú¸¦ ¾ò¾ú´Ù(p<0.05). 2005³â 5ȸ ¿¹Ãë½ÃÀÇ ½Ä»ýºñÀ²Àº °üÇà È¥ÆÄÃÊÁö´Â orchardgrass´Â 45%, tall fescue 22%, Kentucky bluegrass 5% ¹× white clover 24%À̾úÀ¸¸ç, ·¹µå Ŭ·Î¹ö + È¥ÆÄÃÊÁö´Â orchardgrass 40%, tall fescue 22%, Kentucky bluegrass 4% ¹× red clover 31%À̾ú°í, ÀܵðÇü ÃÊÁ¾ + È¥ÆÄ ÃÊÁö´Â orchardgrass 37%, ÀܵðÇü ÃÊÁ¾ 37%(tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) ¹× white clover 23%¸¦ À¯ÁöÇÏ¿´´Ù. ÀÌ»óÀÇ °á°ú¸¦ Á¾ÇÕÇÒ ¶§, ÃÊÁ¾°ú ÆÄÁ¾ºñÀ²¿¡ µû¸¥ È¥ÆÄÃÊÁöÀÇ °Ç¹°¼ö·®°ú »ç·á°¡Ä¡ÀÇ Â÷À̸¦ È®ÀÎÇÒ ¼ö ÀÖ¾úÀ¸¸ç, ·¹µå Ŭ·Î¹ö + È¥ÆÄ ÃÊÁö°¡ °Ç¹°¼ö·®°ú »ç·á°¡Ä¡¸¦ ³ôÀ̴µ¥ È¿°úÀûÀ̾ú´Ù.ell}$ À̾úÀ¸¸ç , yeast extract ÷°¡(ôÕÊ¥)ÇÏ¿© ¹è¾ç½Ã(ÛÆ
Groundwater flow in a basin is greatly affected by many hydrogeological and hydrological characteristics of the basin. A groundwater flow model for the Kap-cheon basin ($area=648.3km^2$) in the Geum river basin was established using MODFLOW by fully considering major features obtained from observed data of 438 wells and 24 streams. Furthermore, spatial groundwater recharge distribution was estimated employing accurately calibrated watershed model developed using SWAT, a physically semi-distributed hydrological model. Model calibration using observed groundwater head data at 86 observation wells yielded the deterministic coefficient of 0.99 and the water budget discrepancy of 0.57%, indicating that the model well represented the regional groundwater flow in the Kap-cheon basin. Model simulation results showed that groundwater flow in the basin was strongly influenced by such factors as topological features, aquifer characteristics and streams. The streams in mountainous areas were found to alternate gaining and losing steams, while the streams in the vicinity of the mid-stream and down-stream, especially near the junction of Kap-cheon and Yudeong-cheon, areas were mostly appeared as gaining streams. Analysis of water budget showed that streams in mountainous areas except for the mid-stream and up-stream of Yudeong-cheon were mostly fed by groundwater recharge while the streams in the mid and down-stream areas were supplied from groundwater inflows from adjacent sub-basins. Hence, it was concluded that the interactions between surface water-groundwater in the Kap-cheon basin would be strongly inter-connected with not only streams but also groundwater flow system itself.
 
Ű¿öµå
°©Ãµ À¯¿ª;ÁØºÐÆ÷Çü À¯Ãâ¸ðµ¨;3Â÷¿ø ÁöÇϼö À¯µ¿ ¸ðµ¨;ÁöÇϼö-ÁöÇ¥¼ö »óÈ£ ÀÛ¿ë;ÁöÇϼö À¯µ¿ ü°è;Kap-cheon Basin;SWAT;MODFLOW;Groundwater-Surface water Interaction;Ground-water Flow System;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.40, no.6, 2007³â, pp.431-446
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200727500218486)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿