¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.40, no.9, 2007³â, pp.677-685
´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÑ Tank ¸ðÇü ¸Å°³º¯¼ö ÃÖÀûÈ­(I): ¹æ¹ý·Ð°ú ¸ðÇü±¸Ãà
( Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation )
±èżø;Á¤ÀÏ¿ø;±¸º¸¿µ;¹è´öÈ¿; ¿¬¼¼´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;¼¼Á¾´ëÇб³ Åä¸ñȯ°æ°øÇаú;³²¿ø°Ç¼³¿£Áö´Ï¾î¸µ;¼¼Á¾´ëÇб³ ¹°ÀÚ¿ø¿¬±¸¼Ò.Åä¸ñȯ°æ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸ÀÇ ¸ñÀûÀº °³³äÀûÀÎ °­¿ì-À¯Ãâ¸ðÇüÀÎ Tank ¸ðÇüÀÇ ¸Å°³º¯¼ö¸¦ »êÁ¤Çϱâ À§ÇÑ ´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®ÁòÀÇ Àû¿ë¼ºÀ» Æò°¡ÇÏ´Â °ÍÀÌ´Ù. ´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®Áò ±â¹ýÀ¸·Î´Â ÃÖ±Ù¿¡ °¡Àå ¸¹ÀÌ »ç¿ëµÇ´Â ±â¹ýÁßÀÇ ÇϳªÀÎ NSGA-II¸¦ äÅÃÇÏ¿© Tank ¸ðÇü°ú °áÇÕÇÏ¿´À¸¸ç, 4°¡Áö ¸ñÀûÇÔ¼ö(À¯Ãâ¿ëÀû¿ÀÂ÷, Æò±ÕÁ¦°ö±Ù ¿ÀÂ÷, °í¼öÀ¯·® Æò±ÕÁ¦°ö±Ù ¿ÀÂ÷ ¹× Àú¼öÀ¯·® Æò±ÕÁ¦°ö±Ù ¿ÀÂ÷)°ªÀ» ÃÖ¼ÒÈ­ÇÏ´Â ÇüÅÂÀÇ ¸ñÀûÇÔ¼ö¸¦ Àû¿ëÇÏ¿´´Ù. NSGA-II´Â ¸ñÀûÇÔ¼öÀÇ °³¼ö°¡ ¸¹¾ÆÁö¸é ÇÑ ¹øÀÇ ½ÇÇà¿¡ ÀÇÇØ ±²ÀåÈ÷ ¸¹Àº ¼öÀÇ ÆÄ·¹ÅäÃÖÀûÇØ¸¦ ±¸ÇÏ´Â ´ÜÁ¡À» °¡Áö°í Àֱ⠶§¹®¿¡ ±¸ÇØÁø ÆÄ·¹ÅäÃÖÀûÇØ Áß¿¡¼­ ¾î¶² ÇØ°¡ ÃÖ¿ì¼±ÇØ ÀÎÁö¸¦ °áÁ¤ÇØ¾ß ÇÒ Çʿ䰡 ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ °íÂ÷¿øÀûÀÎ ÀÇ»ç°áÁ¤À» À§ÇÏ¿© ¼±È£Àû¼ø¼­È­(preference ordering) ±â¹ýÀ» Àû¿ëÇÏ¿´´Ù. NSGA-II¸¦ ÀÌ¿ëÇÏ¿© Tank¸ðÇüÀÇ ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÒ ¶§ ÃʱâÁ¶°ÇÀÌ ÃÖÀûÈ­°úÁ¤¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ¼¼´ë¼ö(generation number)¿Í °³Ã¼±ºÀÇ Å©±â(population size)¿¡ ´ëÇÑ ¹Î°¨µµºÐ¼®À» ¼öÇàÇÏ¿´´Ù. ºÐ¼®°á°ú Tank¸ðÇüÀÇ ¸Å°³º¯¼ö ÃÖÀûÈ­¸¦ À§ÇÑ ¼¼´ë¼ö¿Í °³Ã¼±º Å©±âÀÇ Ãʱ⠰ªÀ» °¢°¢ 900¹ø°ú 1000°³·Î ¼±Á¤ÇÏ´Â °ÍÀÌ ÀûÇÕÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.
 
Ű¿öµå
´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®Áò;ÅÊÅ©¸ðµ¨;¼±È£Àû¼ø¼­È­;ÆÄ·¹Åä ÃÖÀûÈ­;¹Î°¨µµ ºÐ¼®;Multi-objective genetic algorithm;Tank model;Preference ordering;Pareto optimal solution;Sensitivity analysis;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.40, no.9, 2007³â, pp.677-685
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200734515981412)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿