|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.40, no.9, 2007³â, pp.687-696
|
´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÑ Tank ¸ðÇü ¸Å°³º¯¼ö ÃÖÀûÈ(II): ¼±È£Àû ¼ø¼ÈÀÇ Àû¿ë
( Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering ) |
±¸º¸¿µ;±èżø;Á¤ÀÏ¿ø;¹è´öÈ¿; ³²¿ø°Ç¼³¿£Áö´Ï¾î¸µ;¿¬¼¼´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;¼¼Á¾´ëÇб³ Åä¸ñȯ°æ°øÇаú;¼¼Á¾´ëÇб³ ¹°ÀÚ¿ø¿¬±¸¼Ò.Åä¸ñȯ°æ°øÇаú;
|
|
|
 |
|
|
ÃÊ ·Ï |
º» ¿¬±¸´Â ´Ù¸ñÀû À¯ÀüÀÚ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÏ¿© Tank ¸ðÇüÀÇ ¸Å°³º¯¼ö¸¦ ÃßÁ¤Çϴµ¥ ÀÖ¾î¼ ¼±È£Àû¼ø¼È(preference ordering)¸¦ Àû¿ëÇÑ ¿¬±¸·Î½á, ¸ñÀûÇÔ¼öÀÇ °³¼ö°¡ ¿©·¯ °³ÀÎ °æ¿ì¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â ÆÄ·¹ÅäÃÖÀûÈÀÇ ´ÜÁ¡À» ÇØ°áÇϱâ À§ÇÑ °ÍÀÌ´Ù. ÃÖÀûȸ¦ À§ÇÑ ¸ñÀûÇÔ¼ö´Â ¸ðµÎ 4°¡Áö¸¦ »ç¿ëÇÏ¿´À¸¸ç, ¼±È£Àû¼ø¼È¸¦ ÅëÇØ¼ ±¸ÇÑ 2Â÷ È¿À²¼º(2nd order efficiency)À» °¡Áö¸é¼ Á¤µµ(degree)°¡ 3ÀÎ 4°³ÀÇ ÇØ Áß¿¡¼ 1°³ÀÇ ÇØ¸¸À» ÃÖ¿ì¼±ÇØ·Î ¼±Á¤ÇÏ¿´´Ù. NSGA-II·Î µµÃâµÈ ÃÖ¿ì¼±ÇØÀÇ ÀûÇÕ¼ºÀ» »ìÆìº¸±â À§Çؼ, ÀÚµ¿º¸Á¤¹æ¹ýÀÎ Powell ¹æ¹ý°ú SGA(simple genetic algorithm)¸¦ ¸Å°³º¯¼ö ÀÚµ¿º¸Á¤ ¹æ¹ýÀ¸·Î ÀÌ¿ëÇϰí ÇϳªÀÇ ´ÜÀϸñÀûÇÔ¼ö·Î »ç¿ëÇØ¼ ÃÖÀûÈÇÑ °á°ú¿Í ºñ±³Çغ¸¾ÒÀ¸¸ç, ºñ±³°á°ú ´Ù¸ñÀû À¯ÀüÀÚ ¾Ë°í¸®ÁòÀ» 4°³ÀÇ ¸ñÀûÇÔ¼ö¿¡ ¸ðµÎ Àû¿ëÇØ¼ Çѹø¿¡ µµÃâµÈ ¸Å°³º¯¼ö¸¦ ÀÌ¿ëÇÑ °á°ú°¡ º¸Á¤±â°£»Ó¸¸ ¾Æ´Ï¶ó °ËÁ¤±â°£¿¡ ´ëÇØ¼µµ ºñ±³Àû ¾çÈ£ÇÑ °á°ú¸¦ ³ªÅ¸³»´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. |
|
Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation. |
|
Ű¿öµå |
¼±È£Àû¼ø¼È;ÅÊÅ©¸ðÇü;Powell ¹æ¹ý;´Ü¼ø À¯ÀüÀÚ¾Ë°í¸®Áò;Preference ordering;NSGA-II;Tank model;Powell method;Simple genetic algorithm; |
|
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.40, no.9, 2007³â, pp.687-696
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200734515981453)
¾ð¾î : Çѱ¹¾î |
|
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|