¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.41, no.2, 2008³â, pp.212-228
Áõ¹ß»ê »êÁ¤ ¹æ¹ýµéÀÇ ºñ±³ - Àܵð±âÁØÀÛ¹°À» Áß½ÉÀ¸·Î
( Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop )
ÀÓâ¼ö; û¿î´ëÇб³ öµµÇàÁ¤Åä¸ñÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â °ú°Å Á¦¾ÈµÈ 5°¡ÁöÀÇ ±âÁØÁõ¹ß»ê½ÄÀ¸·ÎºÎÅÍ »êÁ¤µÈ Áõ¹ß»ê·®°ú pan Áõ¹ß·®À» ÀÌ¿ëÇÏ¿© »ó°üºÐ¼®À» ½Ç½ÃÇÏ¿´°í pan °è¼ö¸¦ »êÁ¤ÇÏ¿´´Ù. ¶ÇÇÑ ¿ì¸®³ª¶ó 21°³ ±â»ó°üÃøÁöÁ¡¿¡¼­ °ú°Å Á¦¾ÈµÈ 5°¡ÁöÀÇ ±âÁØÁõ¹ß»ê½ÄµéÀ» ºñ±³ÇÏ°í ±× À¯»ç¼ºÀ» ¾Ë¾Æº¸¾Ò´Ù. ºñ±³ °ËÅäµÈ ±âÁØÁõ¹ß»ê½ÄÀº 4°¡Áö ¹æ¹ýÀ¸·Î ºÐ·ùÇÏ¿´À¸¸ç, ºÐ·ùµÈ ¹æ¹ý Áß¿¡¼­ °¢±â ´ëÇ¥ÀûÀÎ ±âÁØÁõ¹ß»ê·® »êÁ¤½ÄÀ» ¼±Á¤ÇÏ¿© Àû¿ëÇÏ¿´´Ù. Àû¿ëµÈ ±âÁØÁõ¹ß»ê½ÄÀº ¿¡³ÊÁö¿Í °ø±âµ¿·ÂÇ×ÀÇ Á¶ÇÕ¹ý¿¡ ±Ù°ÅÇÑ Penman ½Ä, ´ÜÀϱٿø¹ý¿¡ ±Ù°ÅÇÑ FAO Penman-Monteith(FAO P-M) ½Ä, º¹»çÀڷḦ ÀÌ¿ëÇÑ ¹æ¹ýÀÎ Makkink ½Ä°ú Priestley-Taylor ½Ä, ±×¸®°í ±â¿ÂÀÚ·á¿¡ ±Ù°ÅÇÑ ¹æ¹ýÀÎ Hargreaves ½Ä µîÀÌ´Ù. ¿¬±¸Áö¿ª ¼±Á¤À» À§ÇÏ¿© ±â»ó°üÃøÁöÁ¡ÀÌ ÀÖ´Â Áö¿ªÀÇ Áö¸® ¹× ÁöÇüÁ¶°ÇÀ» °í·ÁÇÏ¿´´Ù. »ç¿ëµÈ ±â»óÀÚ·á´Â 1970³âºÎÅÍ 5³â °£°ÝÀ¸·Î 8°³³âÀÇ ÀϺ° ±â»óÀڷḦ »ç¿ëÇÏ¿´´Ù. Àû¿ë°á°ú´Â ¼öÄ¡ ¹× ½Ã°è¿­ µµ½Ã¹æ¹ýÀ» ÅëÇÏ¿© ºñ±³ÇÏ¿´´Ù. ºÐ¼®°á°ú¿¡ ÀÇÇÏ¸é ´ëºÎºÐÀÇ Áö¿ª¿¡¼­ ±âÁØÁõ¹ß»ê½Ä°ú pan Áõ¹ß·®°ú´Â 0.9 ÀÌ»óÀÇ ³ôÀº »ó°ü°ü°è¸¦ º¸À̰í ÀÖÀ¸³ª, pan Áõ¹ß·®°ú ºñ±³ÇÏ¿© ȸ±Í½ÄÀÇ °æ»ç°¡ 1.0º¸´Ù Å©°Å³ª ÀÛÀº °æÇâÀ» º¸À̰í ÀÖ´Ù. Àü±¹ 21°³ ¿¬±¸Áö¿ª Áß¿¡¼­ 12°³ Áö¿ª¿¡¼­ ´ë±â¿ÂµµÀÚ·á¿¡ ±âÃÊÇÑ Hargreaves ½ÄÀÌ FAO P-M ½Ä°ú °¡Àå À¯»çÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Âµ¥, À̵é Áö¿ªÀº ´ë±¸Áö¿ªÀ» Á¦¿ÜÇϰí ÇØ¾ÈÁö¿ª¿¡ À§Ä¡Çϰí ÀÖ´Ù. ¹Ý¸é¿¡ ³»·ú¿¡ À§Ä¡ÇÑ 8°³ Áö¿ª¿¡¼­ º¹»ç·®ÀÚ·á¿¡ ±âÃÊÇÑ Priestley-Taylor ½ÄÀÌ FAO P-M ½Ä°ú À¯»çÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
Five representative reference evapotranspiration(RET) equations were selected, and these equations were compared with pan evaporation by correlation analysis. Pan coefficients were also estimated. Furthermore, five selected RET equations were compared to find the similarity among those at the 21 meteorological stations located in South Korea. Five RET equations selected from 4 different category were Penman(combination approach), FAO Penman-Monteith(FAO P-M) (single source approach), Makkink and Priestley-Taylor (radiation approach) and Hargreaves(temperature approach) equations. In this study, the geographical and topographical conditions were considered for the selection of study stations. The daily meteorological data measured from 1970 at an interval of 5 years were applied in this study. The evapotranspiration estimates obtained by applying evapotranspiration equations were evaluated with numerical and graphical methods. The correlation coefficients between pan evaporation and RET in study stations were above 0.9 indicating very high correlation; however, the slopes of the individual regression lines show the values greater or less than 1.0. Hargreaves equation(temperature approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 12 study stations, which are located near to seashore except Daegu station. On the other hand, Priestley-Taylor equation(radiation approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 8 study stations, which are located in inland.
 
Ű¿öµå
±âÁØÁõ¹ß»ê;Áö¿ª Ư¼º;pan Áõ¹ß·®;Áö¸®Àû Á¶°Ç;reference evapotranspiration;regional characteristics;pan evaporation;geographical conditions;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.41, no.2, 2008³â, pp.212-228
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200807341722674)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿