¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.40, no.1, 2007³â, pp.89-99
ºñ¼±Çü Áõ¹ß·® ¹× Áõ¹ß»ê·® ½Ã°è¿­ÀÇ ¸ðÇüÈ­¸¦ À§ÇÑ ½Å°æ¸Á-À¯ÀüÀÚ ¾Ë°í¸®Áò ¸ðÇü 2. ºÒÈ®½Ç¼º ºÐ¼®¿¡ ÀÇÇÑ ÃÖÀû¸ðÇüÀÇ ±¸Ãà
( Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis )
±è¼º¿ø;±èÇü¼ö; µ¿¾ç´ëÇб³ öµµÅä¸ñÇаú;ÀÎÇÏ´ëÇб³ ȯ°æÅä¸ñ°øÇкÎ;
 
ÃÊ ·Ï
º» ³í¹®¿¡¼­´Â º» ¿¬±¸³íÁ¦(2007)¿¡¼­ °³¹ßµÈ COMBINE-GRNNM-GA(Type-1)À¸·ÎºÎÅÍ ÃÖÀûÇüÅÂÀÇ ±¸Á¶¸¦ °¡Áø ¸ðÇüÀ» ±¸¼ºÇϰí, ÀÔ·ÂÃþ³ëµåÀÇ ±â»óÀÎÀÚ¸¦ Á¦°ÅÇϱâ À§ÇÏ¿© ºÒÈ®½Ç¼º ºÐ¼®À» ½Ç½ÃÇÏ¿´´Ù. ÈÆ·Ã°úÁ¤Áß¿¡ °¡Àå ÃÖ¼ÒÀÇ ÆòȰÀÎÀÚ¸¦ °¡Áø ÀÔ·ÂÃþº¯¼ö´Â COMBINE-GRNNM-GA(Type-1)¿¡¼­ Á¦°ÅµÇ¾úÀ¸¸ç, º¯ÇüµÈ COMBINE-GRNNM-GA(Type-1)Àº ±â»óÇÐÀû º¯¼öÀÇ »õ·Î¿î ÃÖ¼Ò ÆòȰÀÎÀÚ¸¦ ±¸Çϱâ À§ÇÏ¿© ÀçÈÆ·ÃµÈ´Ù. ÃÖ¼Ò ÆòȰÀÎÀÚ¸¦ °¡Áö´Â ÀÔ·ÂÃþ ³ëµå´Â ¸ðÇü°á°úÄ¡¿¡ ´ëÇÏ¿© °¡Àå À¯¿ëÇÏÁö ¾Ê´Â ±â»óÀÎÀÚÀÎ °ÍÀ» ¾Ï½ÃÇϰí ÀÖ´Ù. °Ô´Ù°¡, ¹Î°¨Çϰųª ¹Î°¨ÇÏÁö ¾ÊÀº ±â»óÀÎÀÚµéÀÌ ºÒÈ®½Ç¼º ºÐ¼®À» ÅëÇÏ¿© ¼±ÅõǾîÁø´Ù. ÃÖÀû COMBINE-GRNNM-GA(Type-1)Àº ÃÖ¼Ò ºñ¿ë°ú ³ë·ÂÀ¸·Î °áÃø ȤÀº ¹Ì°èÃø Áõ¹ßÁ¢½Ã Áõ¹ß·®°ú °èÃøµÇ°í ÀÖÁö ¾ÊÀº ¾ËÆÈÆÄ ±âÁØÁõ¹ß»ê·®À» »êÁ¤Çϱâ À§ÇÏ¿© °³¹ßµÇ¾ú´Ù ¸¶Áö¸·À¸·Î Ä¡Àû COMBINE-GRNNM-GA(TyPe-1)À» ÀÌ¿ëÇÏ¿© ¿ì¸®³ª¶ó¿¡¼­ Àü¹ÝÀûÀÎ °¡¹³Çؼ® ¹× °ü°³¹è¼ö ½Ã½ºÅÛ ±¸ÃàÀ» À§ÇÑ Âü°íÀڷḦ Á¦°øÇÒ ¼ö ÀÖ´Â Áõ¹ßÁ¢½Ã Áõ¹ß·® Áöµµ ¹× ¾ËÆÈÆÄ ±âÁØÁõ¹ß»ê·® Áöµµµµ ±¸ÃàµÇ¾îÁú ¼ö ÀÖ´Ù.
Uncertainty analysis is used to eliminate the climatic variables of input nodes and construct the model of an optimal type from COMBINE-GRNNM-GA(Type-1), which have been developed in this issue(2007). The input variable which has the lowest smoothing factor during the training performance, is eliminated from the original COMBINE-GRNNM-GA (Type-1). And, the modified COMBINE-GRNNM-GA(Type-1) is retrained to find the new and lowest smoothing factor of the each climatic variable. The input variable which has the lowest smoothing factor, implies the least useful climatic variable for the model output. Furthermore, The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. The optimal COMBINE-GRNNM-GA(Type-1) is developed to estimate and calculate the PE which is missed or ungaged and the $ET_r$ which is not measured with the least cost and endeavor Finally, the PE and $ET_r$. maps can be constructed to give the reference data for drought and irrigation and drainage networks system analysis using the optimal COMBINE-GRNNM-GA(Type-1) in South Korea.
 
Ű¿öµå
ºÒÈ®½Ç¼º ºÐ¼®;ȸ±ÍºÐ¼®;ÆòȰÀÎÀÚ;Áöµµ±¸Ãà;Uncertainty analysis;Regression analysis;Smoothing factor;Map construction;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.40, no.1, 2007³â, pp.89-99
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200708506339663)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿