¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.40, no.2, 2007³â, pp.171-182
À¯¿ª ¹× ±â»ó»óŸ¦ °í·ÁÇÑ Clark ´ÜÀ§µµÀÇ ¸Å°³º¯¼ö Æò°¡: 2. ¸Å°³º¯¼öÀÇ º¯µ¿¼º ÃßÁ¤
( Evaluation of the Clark Unit Hydrograph Parameters Depending on Basin and Meteorological Condition: 2. Estimation of Parameter Variability )
À¯Ã¶»ó;ÀÌÁöÈ£;±è±â¿í; °í·Á´ëÇб³ °ø°ú´ëÇÐ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;°í·Á´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;°í·Á´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â Clark ÇÕ¼º´ÜÀ§µµÀÇ ¸Å°³º¯¼ö ÃßÁ¤Ä¡¿¡ ´ëÇÑ ½Å·Ú±¸°£À» Á¼Èú ¼ö ÀÖ´Â ¹æ¾ÈÀ¸·Î, À̵éÀ» °­¿ì, ±â»ó, ¹× À¯¿ª Ư¼ºÀÎÀÚ·Î ´Ùº¯·® ȸ±ÍºÐ¼®ÇÑ ÈÄ À̸¦ Monte Carlo ¸ðÀDZâ¹ýÀ» ÅëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. ¾Æ¿ï·¯ ÀÌ·¸°Ô ¾òÀº °á°ú´Â Bootstrap ±â¹ýÀ¸·Î ºÐ¼®ÇÑ °á°ú ¹× ±âÁ¸¿¡ ¸¹ÀÌ »ç¿ëµÇ¾î ¿Ô´ø °æÇè½Ä°úµµ ºñ±³ °ËÅäÇÏ¿´´Ù. ÀÌ»ó°ú °°Àº °úÁ¤À» ÅëÇØ ¾òÀº °á°ú´Â ´ÙÀ½°ú °°´Ù. (1) °üÃøµÈ È£¿ì»ç»óÀÇ ¼ö°¡ Á¦ÇÑÀûÀÎ °æ¿ì, À¯ÃâÆ¯¼º¿¡ ¹ÌÄ¡´Â ÀÎÀÚµéÀ» º¹ÇÕÀûÀ¸·Î °í·ÁÇÏ¿© À¯¿ªÀÇ Æò±ÕÀ¯ÃâÆ¯¼ºÀ» ÃßÁ¤ÇÏ´Â °ÍÀÌ °¡´ÉÇÏ´Ù. (2) Monte Carlo ¸ðÀDZâ¹ýÀ» Àû¿ëÇÏ¿© ÃßÁ¤µÈ ÁýÁ߽ð£ ¹× Àú·ù»ó¼öÀÇ ½Å·Úµµ Æò°¡°¡ °¡´ÉÇÏ´Ù. ÀÌ·¸°Ô ÃßÁ¤ÇÑ ½Å·Ú±¸°£Àº À¯Ã¶»ó µî(2006)¿¡¼­ÀÇ ½Å·Ú±¸°£¿¡ ºñÇØ ÈξÀ Á¼Àº °ÍÀ¸·Î ÆÄ¾ÇµÇ¾ú´Ù. (3) BootstrapÀ» ÅëÇÑ °üÃøÀÚ·áÀÇ ºÐ¼®¿¡¼­µµ À§ÀÇ °á°ú¸¦ ÁöÁöÇÏ´Â °á·ÐÀ» ¾òÀ» ¼ö ÀÖ¾ú´Ù. ±×·¯³ª ¾î´À Á¤µµ ½Å·Úµµ ÀÖ´Â ÁýÁ߽ð£ ¹× Àú·ù»ó¼öÀÇ ÃßÁ¤À» À§Çؼ­´Â ÃÖ¼Ò 20°³ Á¤µµ ÀÌ»óÀÇ µ¶¸³µÈ È£¿ì»ç»óÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î ÆÄ¾ÇµÇ¾ú´Ù. (4) ±âÁ¸ÀÇ °æÇè°ø½Ä°úÀÇ ºñ±³¿¡¼­´Â ¾î¶² °ø½Äµµ º» À¯¿ªÀÇ À¯ÃâÆ¯¼ºÀ» Àß ´ëº¯ÇÏÁö´Â ¸øÇÏ´Â °ÍÀ¸·Î ÆÄ¾ÇµÇ¾ú´Ù. ±×·¯³ª ÁýÁ߽ð£ÀÇ °æ¿ì Kraven(I)°ú Kraven(II)ÀÌ Àú·ù»ó¼öÀÇ °æ¿ì Linsley °ø½ÄÀÌ À¯»çÇÑ °ªÀ» ÁÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ±×·¯³ª ÀÌ °ª ¿ª½Ã »óÇѰú ÇÏÇÑÀÇ ¹üÀ§¿¡ Å©¹Ç·Î »ç¿ë ½Ã ÁÖÀÇÇÒ Çʿ䰡 ÀÖÀ½À» ÆÄ¾ÇÇÒ ¼ö ÀÖ¾ú´Ù.
In this study, as a method for decreasing the confidence interval of the estimates of Clark hydrograph's concentration time and storage coefficient, regression equations of these parameters with respect to those of rainfall, meteorology, and basin characteristics are derived and analyzed using the Monte Carlo simulation technique. The results are also reviewed by comparing them with those derived by applying the Bootstrap technique and empirical equations. Results derived from this research are summarized as follows. (1) Even in case of limited rainfall events are available, it is possible to estimate the mean runoff characteristics by considering the affecting factors to runoff characteristics. (2) It is also possible to use the Monte Carlo simulation technique for estimating and evaluating the confidence intervals for concentration time and storage coefficient. The confidence intervals estimated in this study were found much narrower than those of Yoo et al. (2006). (3) A supporting result could also be derived using the Bootstrap technique. However, at least 20 independent rainfall events are necessary to get a rather significant result for concentration time and storage coefficient. (4) No empirical equations are found to be properly applicable for the study basin. However, empirical equations like the Kraven(I) and Kraven(II) are found valid for the estimation of concentration time, on the other hand the Linsley is found valid for the storage coefficient In this study basin. But users of these empirical formula should be careful as these also provide a wide range of possible values.
 
Ű¿öµå
Clark ´ÜÀ§µµ¹ý;´Ùº¯·® ȸ±ÍºÐ¼®;Monte Carlo ¸ðÀDZâ¹ý;Clark Unit Hydrograph;Multivariate Regression Analysis;Monte Carlo Simulation;Bootstrap;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.40, no.2, 2007³â, pp.171-182
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200710912631034)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿