¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.38, no.6, 2005³â, pp.485-494
¹Ì°èÃø ÁöÁ¡¿¡¼­ÀÇ À¯Ãâ ¸ðÀÇ ¹× ¿¹Ãø
( Runoff Simulation and Forecasting at Ungaged Station )
¾È»óÁø;ÃÖº´¸¸;¿¬Àμº;°ûÇö±¸; ÃæºÏ´ëÇб³ Åä¸ñ°øÇаú;ÃæºÏ´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;ÃæºÏ´ëÇб³ Åä¸ñ°øÇаú;ÃæºÏ´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
À¯·®°ú ¼öÁúÀÇ °ü°è¸¦ ºÐ¼®ÇÏ´Â °ÍÀº ¸Å¿ì Áß¿äÇÏ´Ù. ÇÏõÀÇ ½Ç½Ã°£Àû °ü¸®¸¦ À§Çؼ­´Â À¯·®°ú ¼öÁúÀÇ ÃøÁ¤ÀÌ µ¿ÀÏÇÑ ÁöÁ¡¿¡¼­ µ¿½Ã°£ÀûÀ¸·Î ÀÌ·ç¾îÁ®¾ß º¸´Ù È¿°úÀûÀÌ´Ù. ±×·¯³ª ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡°ú T/M ¼öÀ§°üÃø¼Ò°¡ ¿ø°Å¸®¿¡ À§Ä¡ÇÑ °æ¿ìµéÀÌ ÀÖÀ¸¸ç, Æòâ°­ ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡ÀÌ ±× Áß ÇϳªÀÌ´Ù. ÀÌ·¯ÇÑ ÁöÁ¡¿¡¼­´Â º¸´Ù Á¤È®ÇÑ À¯·® »êÁ¤°ú À̸¦ Ȱ¿ëÇÑ ¿¹Ãø ÇÁ·Î±×·¥À̳ª ½Ã½ºÅÛÀÌ ¿ä±¸µÈ´Ù. À̹ø ¿¬±¸¿¡¼­´Â ¹Ì°èÃø ÁöÁ¡ÀÎ Æòâ°­ ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡¿¡ À¯·®¿¹Ãø ½Å°æ¸Á ¸ðÇüÀ» Àû¿ëÇϰí, Àû¿ë¼ºÀ» °ËÅäÇϱâ À§ÇØ WMS ¸ðÇüÀÇ ¸ðÀǰá°ú¿Í ºñ±³ÇÏ¿´´Ù. WMS ¸ðÇüÀº ÷µÎÀ¯·®ÀÌ ÀÛ°í, ¼ö¹®°î¼±ÀÌ ´ÜÁ¶·Î¿î »ç»ó¿¡ ÀûÇÕÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ½Å°æ¸Á ¸ðÇüÀÇ À¯Ãâ·® ¿¹Ãø°ªÀº ºñÀ¯·®°ú WMS ¸ðÇüÀÇ ¸ðÀǰª¿¡ ±Ù»çÇÏ¿´À¸¸ç, ¹Ì°èÃø ÁöÁ¡¿¡¼­ÀÇ À¯Ãâ·® º¯È­¼ºÇâÀ» Àß ¹Ý¿µÇÏ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
It is very important to analyze the correlation between discharge and water quality. The observation of discharge and water quality are effective at same point as well as same time for real time management. But no less significant is the fact that there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. In this case, it need to observe accurate discharge data, and to develop forecasting program or system using real time data. In this paper, discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and compared with discharge using WMS(Watershed Modeling System) model. WMS shows better results when peak discharge is small and hydrograph is smooth. Forecasted discharge of neural network model have achieved the highest overall accuracy of specific discharge and WMS. Neural network model forecast change of discharge well on unrecored station.
 
Ű¿öµå
½Å°æ¸Á;WMS ¸ðÇü;À¯·®;¹Ì°èÃø ÁöÁ¡;neural network;WMS model;discharge;ungaged station;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.38, no.6, 2005³â, pp.485-494
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200531234554742)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿