|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.38, no.6, 2005³â, pp.429-438
|
ºÒ±ÔÄ¢ÆÄ¸¦ À§ÇÑ ¾àºñ¼±Çü ¾àºÐ»ê ÆÄ¶û ¹æÁ¤½Ä
( Weakly Nonlinear and Dispersive Wave Equations for Random Waves ) |
Á¤Àç»ó;Á¶¿ë½Ä; Çö´ë»ê¾÷°³¹ß Åä¸ñ¼³°èÆÀ;ÇѾç´ëÇб³ Åä¸ñ°øÇаú;
|
|
|
 |
|
|
ÃÊ ·Ï |
º» ¿¬±¸¿¡¼´Â Boussinesq ¹æÁ¤½ÄÀ» ÀÌ¿ëÇÏ¿©, ºÒ±ÔÄ¢ ÆÄ¶ûÀÇ Á÷Á¢ÀûÀÎ ÇØ¼®ÀÌ °¡´ÉÇÑ ÇÑ ½ÖÀÇ »ó¹ÌºÐ¹æÁ¤½ÄÀ» À¯µµÇÏ¿´´Ù. ÀÔ»çÆÄ¶ûÀº TMA(TEXEL storm, MARSEN, ARSLOE) ÃµÇØ ½ºÆåÆ®·³À» ÀÌ¿ëÇÏ¿© ÀçÇöÇÏ¿´À¸¸ç, Áö¹è¹æÁ¤½ÄÀº 4Â÷ Runge-Kutta ¹ýÀ» ÀÌ¿ëÇÏ¿© ÀûºÐÇÏ¿´´Ù. »õ·Î À¯µµµÈ ÆÄ¶û ¹æÁ¤½ÄÀ» ÀÌ¿ëÇÏ¿©, ÀÏÁ¤ ¼ö½ÉÀ» ÁøÇàÇÏ´Â ÆÄ¶ûÀÇ ºñ¼±Çü ¿¡³ÊÁö ±³È¯È¿°ú¸¦ °è»êÇÏ¿´´Ù. ¶ÇÇÑ, ÀÏÁ¤ °æ»ç¸éÀÇ Á¤ÇöÆÄÇü ÁöÇüÀ» Åë°úÇÏ´Â ºÒ±ÔÄ¢ÆÄ¶ûÀÇ Æ¯¼º¿¡ °üÇØ ¼öÄ¡ÀûÀ¸·Î °ËÅäÇÏ¿´´Ù. ºñ¼±Çü¼ºÀÌ ºÒ±ÔÄ¢ÆÄ¶ûÀÇ Åë°ú¿Í ¹Ý»ç¿¡ Å« ¿µÇâÀ» ÁÖ¾ú´Ù. |
|
In this study, a couple of ordinary differential equations which can describe random waves are derived from the Boussinesq equations. Incident random waves are generated by using the TMA(TEXEL storm, MARSEN, ARSLOE) shallow-water spectrum. The governing equations are integrated with the 4-th order Runge-Kutta method. By using newly derived wave equations, nonlinear energy interaction of propagating waves in constant depth is studied. The characteristics of random waves propagate over a sinusoidally varying topography lying on a sloping beach are also investigated numerically. Transmission and reflection of random waves are considerably affected by nonlinearity. |
|
Ű¿öµå |
Boussinesq ¹æÁ¤½Ä;ºÒ±ÔÄ¢ ÆÄ¶û;TMA ½ºÆåÆ®·³;ºñ¼±Çü¼º;Boussinesq equations;random waves;TMA shallow-water spectrum;nonlinearity; |
|
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.38, no.6, 2005³â, pp.429-438
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200531234554543)
¾ð¾î : Çѱ¹¾î |
|
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|