|
|
Çѱ¹¼öÀÚ¿øÇÐȸ / v.38, no.7, 2005³â, pp.565-574
|
À¯·®°ú ¼öÁúÀ» ¿¬°èÇÑ ½Ç½Ã°£ ÀΰøÁö´É °æº¸½Ã½ºÅÛ °³¹ß (I) À¯·®-¼öÁú ¿¹Ãø¸ðÇüÀÇ Àû¿ë
( A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model ) |
¿¬Àμº;¾È»óÁø; ÃæºÏ´ëÇб³ Åä¸ñ°øÇаú;ÃæºÏ´ëÇб³ Åä¸ñ°øÇаú;
|
|
|
 |
|
|
ÃÊ ·Ï |
Æòâ° ¼öÁúÀÚµ¿ÃøÁ¤¸Á ½Ç½Ã°£ ÀڷḦ ÀÌ¿ëÇÏ¿© °¿ì½Ã¿Í ¹«°¿ì½Ã·Î ±¸ºÐÇÏ¿© ºÐ¼®ÇÏ¿´´Ù. °¿ì½Ã¿¡ ÃøÁ¤µÈ TOC ÀÚ·á´Â ¹«°¿ì½Ã ÃøÁ¤µÈ ÀÚ·á¿¡ ºñÇØ Æò±Õ°ª, ÃÖ´ë°ª, Ç¥ÁØÆíÂ÷°¡ Å©°Ô ³ªÅ¸³µÀ¸¸ç, °¿ì½ÃÀÇ DO ÀÚ·á´Â ¹«°¿ì½Ã¿¡ ÃøÁ¤µÈ ÀڷẸ´Ù ³·¾Æ À¯·®ÀÌ ¼öÁúº¯È¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î ºÐ¼®µÇ¾ú´Ù. ½Å°æ¸Á ¸ðÇü°ú ´º·Î-ÆÛÁö ¸ðÇüÀ¸·Î ¼öÁú¿¹Ãø ¸ðÇüÀ» ±¸¼ºÇϰí, Àû¿ëÇÏ¿´´Ù. LMNN, MDNN, ANFIS ¸ðÇüÀº TOC ¸ðÀÇ¿¡¼ DO ¿¹Ãø¿¡¼´Â LMNN, MDNN ¸ðÇüÀÌ ANFIS ¸ðÇüº¸´Ù ÁÁÀº °á°ú¸¦ º¸¿´À¸¸ç, Á¤·®Àû ÀÚ·á¿¡ Á¤¼ºÀû ÀÚ·áÀÎ ½Ã°£À» ÇнÀÇÑ MDNN ¸ðÇüÀÌ °¡Àå ÀÛÀº ¿ÀÂ÷¸¦ º¸¿´´Ù. ÇÏõÀÇ ½Ç½Ã°£Àû °ü¸®¸¦ À§Çؼ´Â À¯·®°ú ¼öÁúÀÇ ÃøÁ¤ÀÌ µ¿ÀÏÇÑ ÁöÁ¡¿¡¼ µ¿½Ã°£ÀûÀ¸·Î ÀÌ·ç¾îÁ®¾ß º¸´Ù È¿°úÀûÀÌ´Ù. ±×·¯³ª ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡°ú T/M ¼öÀ§°üÃø¼Ò°¡ ¿ø°Å¸®¿¡ À§Ä¡ÇÑ °æ¿ìµéÀÌ ÀÖÀ¸¸ç, Æòâ° ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡ÀÌ ±× Áß ÇϳªÀÌ´Ù. ¿¬±¸¿¡¼´Â Æòâ° ¼öÁúÀÚµ¿ÃøÁ¤¸Á ÁöÁ¡ÀÇ À¯Ãâ¿¹ÃøÀ» À§ÇÑ ½Å°æ¸Á ¸ðÇüÀ» ±¸¼ºÇÏ¿© ¼öÁú¿¹Ãø ¸ðÇü°ú ¿¬°èÇÏ¿´À¸¸ç, ¿¬°èµÈ ¸ðÇüÀº ¼öÁú¿¹Ãø¿¡ °³¼±µÈ °á°ú¸¦ º¸¿´´Ù. |
|
It is used water quality data that was measured at Pyeongchanggang real time monitoring stations in Namhan river. These characteristics were analyzed with the water qualify of rainy and nonrainy periods. TOC (Total Organic Carbon) data of rainy periods has correlation with discharge and shows high values of mean, maximum, and standard deviation. DO (Dissolved Oxygen) value of rainy periods is lower than those of nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water qualify forecasting models were applied. LMNN, MDNN, and ANFIS models have achieved the highest overall accuracy of TOC data. LMNN (Levenberg-Marquardt Neural Network) and MDNN (MoDular Neural Network) model which are applied for DO forecasting shows better results than ANFIS (Adaptive Neuro-Fuzzy Inference System). MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. The observation of discharge and water quality are effective at same point as well as same time for real time management. But there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. So discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and the water quality forecasting model is linked to the runoff forecasting model. That linked model shows the improvement of waterquality forecasting. |
|
Ű¿öµå |
½Å°æ¸Á;´º·Î-ÆÛÁö;À¯·®;¼öÁú;¿¹Ãø;neural network;neuro-fuzzy;discharge;water quality;forecasting; |
|
|
|
 |
|
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.38, no.7, 2005³â, pp.565-574
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200531234566429)
¾ð¾î : Çѱ¹¾î |
|
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|