¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.38, no.8, 2005³â, pp.595-604
´Ùº¯·® Çٹеµ ÃßÁ¤¹ýÀ» ÀÌ¿ëÇÑ Àϰ­¼ö·® ¸ðÀÇ¿¡ ´ëÇÑ ¿¬±¸
( A Study on the Simulation of Daily Precipitation Using Multivariate Kernel Density Estimation )
Â÷¿µÀÏ;¹®¿µÀÏ; Çѱ¹Á¾ÇÕ±â¼ú°³¹ß°ø»ç;¼­¿ï½Ã¸³´ëÇб³ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
°üÃøÀÚ·áÀÇ º¸¿ÏÀ̳ª È®ÃæÀ» À§ÇÑ °­¼ö·® ¸ðÀǹ߻ýÀº ¼ö¹®ºÐ¼®¿¡ À־ Áß¿äÇÑ °úÁ¦¶ó°í ÇÒ ¼ö ÀÖ´Ù. °­¼ö·®À» ¸ðÀÇÇÏ´Â ¹æ¹ýÀº Å©°Ô ±âÁ¸ÀÇ ¸Å°³º¯¼öÀû ¹æ¹ý°ú ºñ¸Å°³º¯¼öÀû ¹æ¹ý µÎ °¡Áö·Î ³ª´­ ¼ö ÀÖ°í, °­¼ö·® ¸ðÀÇÀÇ ½Ã°£°£°Ý¿¡ µû¶ó Àϰ­¼ö·® ÀÚ·áÀÇ ¸ðÀÇ ¶Ç´Â ½Ã°£°­¼ö·® ÀÚ·áÀÇ ¸ðÀÇ µîÀ¸·Î ±¸ºÐÇÒ ¼ö ÀÖ´Ù. Áö±Ý±îÁö, Markov¸ðÇüÀº Àϰ­¼ö·® ¸ðÀǹ߻ý¿¡ ¸¹ÀÌ ÀÌ¿ëµÇ¾î¿Ô´Ù. ÀÌ·¯ÇÑ ´ëºÎºÐ Markov¸ðÇüµéÀº µ¿Áú¼º¸ðÇüÀ¸·Î »óź¤Å͸¦ ±¸ÃàÇϴµ¥ À־ ÀÚ·áÀÇ Å©±â°¡ ÀÛÀ¸¸é ¸ðÇü±¸ÃàÀÇ ¾î·Á¿òÀÌ µû¸£°í °°Àº ¿ù¿¡ ´ëÇÑ »óź¤ÅÍÀÇ µ¿Áú¼ºÀ» °¡Á¤ÇÏ´Â µîÀÇ ¹®Á¦°¡ ÀÖ´Ù. ½ÇÁ¦ °­¼ö¹ß»ýÀÇ °úÁ¤Àº ºñÁ¤»óÀû(nonstationary)À̹ǷΠÀ̸¦ º¸¿ÏÇϱâ À§ÇØ, µÈ ³í¹®¿¡¼­´Â Àϰ­¼ö·®À» ±âÁ¸ÀÇ ¸Å°³º¯¼öÀûÀÎ ¹æ¹ýÀÌ ¾Æ´Ñ ´Üº¯·®°ú ´Ùº¯·®¿¡ ´ëÇÏ¿© ºñ¸Å°³º¯¼öÀûÀÎ ¹æ¹ýÀ¸·Î Á¢±ÙÇÏ¿© ¸ðÀÇÇÏ´Â ¹æ¹ý¿¡ ´ëÇÏ¿© ºÐ¼®ÇÏ¿´´Ù.
Precipitation simulation for making the data size larger is an important task for hydrologic analysis. The simulation can be divided into two major categories which are the parametric and nonparametric methods. Also, precipitation simulation depends on time intervals such as daily or hourly rainfall simulations. So far, Markov model is the most favored method for daily precipitation simulation. However, most models are consist of state transition probability by using the homogeneous Markov chain model. In order to make a state vector, the small size of data brings difficulties, and also the assumption of homogeneousness among the state vector in a month causes problems. In other words, the process of daily precipitation mechanism is nonstationary. In order to overcome these problems, this paper focused on the nonparametric method by using uni-variate and multi-variate when simulating a precipitation instead of currently used parametric method.
 
Ű¿öµå
°­¼ö·® ¸ðÀÇ;ºñ¸Å°³º¯¼öÀû ¹æ¹ý;Markov ¸ðÇü;´Ùº¯·®;precipitation simulation;nonparametric method;Markov model;multi-variate;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.38, no.8, 2005³â, pp.595-604
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200531234557602)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿