¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.38, no.8, 2005³â, pp.655-664
CE-QUAL-W2 ¸ðÇüÀ» ÀÌ¿ëÇÑ Àú¼öÁö ʼöÀÇ ½Ã°ø°£ºÐÆ÷ ¸ðÀÇ
( Simulations of Temporal and Spatial Distributions of Rainfall-Induced Turbidity Flow in a Reservoir Using CE-QUAL-W2 )
Á¤¼¼¿õ;¿ÀÁ¤±¹;°íÀÍȯ; ÃæºÏ´ëÇб³ ȯ°æ°øÇаú;ÃæºÏ´ëÇб³ °ø°ú´ëÇРȯ°æ°øÇаú;Çѱ¹¼öÀÚ¿ø°ø»ç ¼öÀÚ¿ø¿¬±¸¿ø;
 
ÃÊ ·Ï
Àú¼öÁö¸¦ ÅëÇÑ ¼öÀÚÀ©ÀÇ Áö¼ÓÀû È®º¸¿Í À̿뿡 °É¸²µ¹ÀÌ µÇ°í Àִ Ź¼öÀÇ Àå±â¹ß»ý¹®Á¦¸¦ ±â¼úÀûÀ¸·Î ÇØ°áÇϰíÀÚ ½Ç½Ã°£ ʼö °¨½Ã¿Í ¿¹Ãø½Ã½ºÅÛ(RTMMS)À» ±¸Ãà ÁßÀ̸ç, 2004³â È«¼ö±â µ¿¾È ´ëûȣ¸¦ ´ë»óÀ¸·Î À¯ÀÔÇϴ Ź¼öÀÇ ¼ö¸® ¹× ¼öÁúƯ¼ºÀ» Á¶»çÇϰí 2Â÷¿ø Ⱦ¹æÇâ Æò±Õ ¼ö¸® ¹× ¼öÁú¸ðÇüÀÎ CE-QUAL-W2(W2)¸¦ Àû¿ëÇÏ¿© ʼöÀÇ ¹Ðµµ·ù °Åµ¿°ú ½Ã${cdot}$°ø°£Àû ºÐÆ÷¸¦ ¿¹ÃøÇÏ°í ½ÇÃø°ª°ú ºñ±³ÇÏ¿© ¸ðÇüÀÇ Àû¿ë°¡´É¼ºÀ» Æò°¡ÇÏ¿´´Ù. °­¿ì»ç»ó µ¿¾È ÇÏõ ¼ö¿ÂÀº $5{sim}10^{circ}C$ Á¤µµ Çϰ­ÇÏ¿´À¸¸ç ʼö°¡ Àú¼öÁö³»¿¡¼­ ¹Ðµµ·ù¸¦ Çü¼ºÇÏ´Â ¿øÀÎÀ¸·Î ÀÛ¿ëÇß´Ù. Àû¿ëµÈ W2¸ðÇüÀº ¼ö¿ÂÀÇ ¼ºÃþ±¸Á¶ º¯È­¿Í ʼöÀÇ Ä§°­Á¡, µµ´Þ½Ã°£, ÁßÃþ¹Ðµµ·ù µÎ²² µî ʼöÀÇ °Åµ¿Æ¯¼ºÀ» ºñ±³Àû Àß ¸ðÀÇÇÏ¿´´Ù. ±×·¯³ª ±¹ºÎÀûÀ¸·Î ʼö°¡ À§Ä¡ÇÑ ÁßÃþ°ú ʼö À¯ÀÔ Àü¿¡ Çü¼ºµÇ¾ú´ø ÀüÀÌÃþ¿¡¼­ ¼ö¿Â°ú ʵµÀÇ ¸ðÀǰª°ú ½ÇÃø°ªÀÌ À¯ÀÇÇÒ ¸¸ÇÑ ¿ÀÂ÷¸¦ º¸¿´´Ù. ÆæÆ¼¾ö±Þ PC(CPU 2.0GHz)·Î È«¼ö±â Àüü±â°£ ¸ðÀÇ¿¡ ¼Ò¿äµÈ ½Ã°£Àº ¾à 4ºÐÀ¸·Î½á ¸ðÇüÀº °è»êÀÇ È¿À²¼º Ãø¸é¿¡¼­ ½Ç½Ã°£ ¸ðÀÇ¿¡ ÀûÇÕÇÑ °ÍÀ¸·Î Æò°¡µÈ´Ù.
A real-time monitoring and modeling system (RTMMS) for rainfall-induced turbidity flow, which is one of the major obstacles for sustainable use of reservoir water resources, is under development. As a prediction model for the RTMMS, a laterally integrated two-dimensional hydrodynamic and water quality model, CE-QUAL-W2 was tested by simulating the temperature stratification, density flow regimes, and temporal and spatial distributions of turbidity in a reservoir. The inflow water temperature and turbidity measured every hour during the flood season of 2004 were used as the boundary conditions. The monitoring data showed that inflow water temperature drop by 5 to $10^{circ}C$ during rainfall events in summer, and consequently resulted in the development of density flow regimes such as plunge flow and interflow in the reservoir. The model showed relatively satisfactory performance in replicating the water temperature profiles and turbidity distributions, although considerable discrepancies were partially detected between observed and simulated results. The model was either very efficient in computation as the CPU run time to simulate the whole flood season took only 4 minutes with a Pentium 4(CPU 2.0GHz) desktop computer, which is essentially requited for real-time modeling of turbidity plume.
 
Ű¿öµå
ʼö;Àú¼öÁö ¹Ðµµ·ù;½Ç½Ã°£ ʼö °¨½Ã ¹× ¿¹Ãø½Ã½ºÅÛ;Turbidity flow;real-time monitoring;reservoir density flow regimes;CE-QUAL-W2;RTMMS;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.38, no.8, 2005³â, pp.655-664
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200531234557777)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿