¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.43, no.9, 2010³â, pp.813-822
Gumbel ºÐÆ÷ÇüÀÇ ¼öÁ¤ Anderson-Darling °ËÁ¤Åë°è·® À¯µµ ¹× ±â°¢·Â °ËÅä
( Derivation of Modified Anderson-Darling Test Statistics and Power Test for the Gumbel Distribution )
½ÅÈ«ÁØ;¼º°æ¹Î;ÇãÁØÇà; ¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³ ´ëÇпø Åä¸ñ°øÇаú;¿¬¼¼´ëÇб³ °ø°ú´ëÇÐ Åä¸ñ°øÇаú;
 
ÃÊ ·Ï
ºóµµÇؼ®¿¡ À־ Áß¿äÇÑ ¹®Á¦´Â ƯÁ¤ ÀçÇö±â°£¿¡ ´ëÇÑ ¼ö¹®·®ÀÇ Å©±â¸¦ »êÁ¤ÇÏ´Â °ÍÀ¸·Î, ºóµµÇؼ®¿¡¼­´Â ÀϹÝÀûÀ¸·Î °üÃø±â°£º¸´Ù ±ä ÀçÇö±â°£¿¡ ÇØ´çÇÏ´Â ¼ö¹®·®ÀÇ Å©±â¸¦ »êÁ¤Çϱâ À§ÇØ °¡Á¤µÈ È®·üºÐÆ÷ÇüÀ» Ç¥º» ÀÚ·á¿¡ ÀûÇÕ½ÃŰ°Ô µÈ´Ù. µû¶ó¼­ ÀûÀýÇÑ È®·üºÐÆ÷ÇüÀÇ ¼±Á¤ÀÌ ¹«¾ùº¸´Ù Áß¿äÇϸç ÀÌ´Â ÀϹÝÀûÀ¸·Î ´ë»ó ÀÚ·á·ÎºÎÅÍ ¾ò¾îÁö´Â °æÇèÀû ºóµµºÐÆ÷¿Í °¡Á¤ÇÑ È®·üºÐÆ÷ÀÇ ÀÏÄ¡ Á¤µµ¸¦ ÆÇ´ÜÇÏ´Â ÀûÇÕµµ °ËÁ¤ ¹æ¹ýÀ» ÀÌ¿ëÇÏ°Ô µÈ´Ù. ÀϹÝÀûÀ¸·Î ¸¹ÀÌ »ç¿ëµÇ´Â ÀûÇÕµµ°ËÁ¤ ¹æ¹ýµéÀº ¸ðµç Ç¥º» ÀÚ·áµéÀÇ ÀûÇÕ Á¤µµ¸¦ µ¿ÀÏÇÏ°Ô °í·ÁÇϱ⠶§¹®¿¡ ±ØÄ¡»ç»óÀÇ Å©±â Áõ°¡¿¡ µû¸¥ ¿µÇâÀº ¹Ý¿µÇϱâ Èûµç ¹æ¹ýµéÀÌ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â ¸ðÀǽÇÇèÀ» ÅëÇØ ±ØÄ¡»ç»ó¿¡ ´ëÇÏ¿© °¡ÁßÄ¡¸¦ ÁÖ´Â modified Anderson-Darling (AD) °ËÁ¤ ¹æ¹ýÀÇ Gumbel ºÐÆ÷Çü¿¡ ´ëÇÑ °ËÁ¤ Åë°è·® ÇѰ谪À» Á¦½ÃÇÏ¿´À¸¸ç, ±âÁ¸ÀÇ ¿©·¯ ÀûÇÕµµ °ËÁ¤ ¹æ¹ý°úÀÇ ±â°¢·ÂÀ» ºñ±³ÇØ º¸°í, À̸¦ ½ÇÁ¦ ÀÚ·á¿¡ Àû¿ëÇÏ¿© ±× °á°ú¸¦ »ìÆìº¸¾Ò´Ù. ±× °á°ú modified AD °ËÁ¤ ¹æ¹ýÀÌ ±âÁ¸ÀÇ ¿©·¯ °¡Áö ÀûÇÕµµ °ËÁ¤ ¹æ¹ýº¸´Ùµµ ±â°¢·ÂÀÌ ´õ ¿ì¼öÇÑ °ÍÀ¸·Î ³ªÅ¸³µÀ¸¸ç, ±âÁ¸ÀÇ ÀûÇÕµµ °ËÁ¤ ¹æ¹ýÀ¸·Î´Â ºÎÁ·ÇÑ ºÐÆ÷Çü ¼±Á¤ ±âÁØÀÇ ºÎÁ·ÇÑ ºÎºÐÀ» ¾î´À Á¤µµ º¸¿ÏÇØ ÁÙ ¼ö ÀÖÀ» °ÍÀ¸·Î ÆÇ´ÜµÇ¾ú´Ù.
An important problem in frequency analysis is the estimation of the quantile for a certain return period. In frequency analysis an assumed probability distribution is fitted to the observed sample data to estimate the quantile at the upper tail corresponding to return periods which are usually much larger than the record length. In most cases, the selection of an appropriate probability distribution is based on goodness of fit tests. The goodness of fit test method can be described as a method for examining how well sample data agrees with an assumed probability distribution as its population. However it gives generally equal weight to differences between empirical and theoretical distribution functions corresponding to all the observations. In this study, the modified Anderson-Darling (AD) test statistics are provided using simulation and the power study are performed to compare the efficiency of other goodness of fit tests. The power test results indicate that the modified AD test has better rejection performances than the traditional tests. In addition, the applications to real world data are discussed and shows that the modified AD test may be a powerful test for selecting an appropriate distribution for frequency analysis when extreme cases are considered.
 
Ű¿öµå
ÀûÇÕµµ °ËÁ¤;modified Anderson-Darling °ËÁ¤ ¹æ¹ý;±â°¢·Â °ËÅä;goodness-of-fit test;modified Anderson-Darling test;power test;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.43, no.9, 2010³â, pp.813-822
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201028552428569)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿