¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.43, no.12, 2010³â, pp.1083-1091
°­¿ì-À¯Ãâ ¸ðÇü Àû¿ëÀ» À§ÇÑ °­¿ì ³»»ð¹ý ºñ±³ ¹× 2´Ü°è Àϰ­¿ì ³»»ð¹ýÀÇ °³¹ß
( Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling )
Ȳ¿¬»ó;Á¤¿µÈÆ;ÀÓ±¤¼·;ÇãÁØÇà; ¾ÆÄ­¼Ò ÁÖ¸³´ëÇб³;¿¬¼¼´ëÇб³ Åä¸ñȯ°æ°øÇаú;Çѱ¹¼öÀÚ¿ø°ø»ç K-water;¿¬¼¼´ëÇб³ Åä¸ñȯ°æ°øÇаú;
 
ÃÊ ·Ï
ºÐÆ÷Çü ¼ö¹® ¸ðÇüÀÇ Àϰ­¿ì ÀÔ·Â ÀÚ·á´Â ºÒ°¡ÇÇÇÏ°Ô ºÒ±ÔÄ¢ÇÏ°í ¹Ðµµ°¡ ³·Àº °üÃø¸Á¿¡¼­ ±â·ÏµÈ °ªÀ» ³»»ðÇØ »ç¿ëÇÏ°Ô µÇ³ª, ÈçÈ÷ »ç¿ëµÇ´Â ´ëºÎºÐÀÇ ³»»ð¹ýµéÀº ½ÇÁ¦ Àϰ­¿ìÀÇ ´Ù¾çÇÑ °ø°£Àû ºÐÆ÷¸¦ Àß ÀçÇöÇÏÁö ¸øÇÏ´Â ¹®Á¦°¡ ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â ³Î¸® »ç¿ëµÇ´Â ´Ù¼¸ °¡ÁöÀÇ °­¿ì ³»»ð ¹æ¹ýÀ» µÎ°³ÀÇ À¯¿ª¿¡ »ç¿ëÇÏ¿© ºñ±³ÇÏ°í ½ÇÁ¦ °ø°£Àû ºÐÆ÷¸¦ º¸´Ù Àß ³ªÅ¸³¾ ¼ö ÀÖ´Â 2´Ü°è ³»»ð¹ýÀ» Á¦¾ÈÇÏ¿´´Ù. ºñ±³¿¡ »ç¿ëµÈ ³»»ð¹ýÀº (1) ¿ª°¡ÁßÄ¡ ¹æ¹ý(IDW), (2) ´ÙÁßȸ±ÍºÐ¼® (MLR), (3) ¿ù°­¿ì¸¦ ÀÌ¿ëÇÑ ´ÙÁßȸ±ÍºÐ¼®¹ý(CMLR), (4) ±¹Áö°¡ÁßÄ¡ ´ÙÁßȸ±ÍºÐ¼®(LWP) µîÀÌ´Ù. º¸´Ù Çâ»óµÈ ³»»ðÀ» À§ÇÑ 2´Ü°è ³»»ð¹ýÀº ¸ÕÀú ·ÎÁö½ºÆ½ ȸ±ÍºÐ¼®À¸·Î °­¿ì-ºñ°­¿ì Áö¿ªÀ» ±¸ºÐÇÏ°í °­¿ì Áö¿ª¿¡¼­¸¸ ±âÁ¸ÀÇ ³»»ð¹ýÀ» Àû¿ëÇÏ¿© °­¿ì·®À» ±¸ÇÏ´Â ¹æ¹ýÀÌ´Ù. ±âÁ¸ ¹æ¹ý°úÀÇ ºñ±³°á°ú °ø°£ÀûÀÎ ÆíÂ÷°¡ ½ÉÇÑ Àϰ­¿ìÀÇ Æ¯¼ºÀ» 2´Ü°è ³»»ð¹ý¿¡¼­ Àß Ç¥ÇöÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. Á¦¾ÈµÈ ¹æ¹ýÀº ¼ö¹®¸ðÇü¿¡ÀÇ Àû¿ë»Ó¸¸ ¾Æ´Ï¶ó À¯Ãâ·®ÀÇ ¿¹º¸ ¹× ´ë±â ¼øÈ¯ ¸ðÇüÀÇ ´Ù¿î ½ºÄÉÀϸµ¿¡µµ È¿°úÀûÀ¸·Î »ç¿ëµÉ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÈ´Ù.
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.
 
Ű¿öµå
°­¼ö;2´Ü°è ³»»ð¹ý;ºÐÆ÷Çü ¼ö¹®¸ðÇü;precipitation;two-step interpolation;distributed hydrologic model;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.43, no.12, 2010³â, pp.1083-1091
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201007049674091)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿