¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.2, 2011³â, pp.85-96
¿Ö°îµµ °è¼ö¸¦ °í·ÁÇÑ GEV ºÐÆ÷ÀÇ µµ½ÃÀ§Ä¡°ø½Ä À¯µµ
( Derivation of Plotting Position Formulas Considering the Coefficients of Skewness for the GEV Distribution )
±è¼ö¿µ;ÇãÁØÇà;Ãֹοµ; ¿¬¼¼´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;¿¬¼¼´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;¿¬¼¼´ëÇб³ »çȸȯ°æ½Ã½ºÅÛ°øÇкÎ;
 
ÃÊ ·Ï
¿¬ÃÖ´ë¼ö¹®·®ÀÇ µµ½ÃÀû ºÐ¼®¿¡ ÁÖ·Î ÀÌ¿ëµÇ¾î ¿Â È®·üµµ½ÃÀ§Ä¡´Â Ç¥º»ÀÚ·á¿Í ÀûÁ¤ È®·üºÐÆ÷ÇüÀÇ ÀûÇÕµµ¸¦ Ç¥½ÃÇÏ¿© ÃʰúÈ®·üÀ» »êÁ¤ÇÒ ¼ö ÀÖµµ·Ï Çϸç, ÀϺΠÀûÇÕµµ °ËÁ¤¿¡µµ »ç¿ëµÇ±âµµ ÇÑ´Ù. È®·üµµ½ÃÀ§Ä¡¸¦ °áÁ¤ÇÏ´Â µµ½ÃÀ§Ä¡°ø½ÄÀº ¿À·¡ ÀüºÎÅÍ ²ÙÁØÈ÷ ¿¬±¸µÇ¾î ¿Ô´Âµ¥, ƯÈ÷ ºóµµÇؼ®¿¡ ³Î¸® »ç¿ëµÇ´Â GEV ºÐÆ÷¿¡ ´ëÇÑ ¿¬±¸´Â ´Ù¸¥ ºÐÆ÷Çüº¸´Ù ´õ¿í Ȱ¹ßÈ÷ ÀÌ·ç¾îÁ® ¿Ô´Ù. º» ¿¬±¸¿¡¼­´Â GEV ºÐÆ÷¿¡ ÀûÇÕÇÑ µµ½ÃÀ§Ä¡°ø½ÄÀ» ÃßÁ¤ÇϰíÀÚ GEV ºÐÆ÷ÀÇ ¼ø¼­Åë°è·®ÀÇ Æò±Õ °³³äÀ» ÀÌ¿ëÇÏ¿© ÀÌ·ÐÀû Ãà¼Òº¯·®À» À¯µµÇÏ¿´´Ù. ¶ÇÇÑ ´Ù¾çÇÑ Ç¥º»Å©±â¿Í Çü»ó ¸Å°³º¯¼ö¿Í ¿¬°üÀÌ ÀÖ´Â ¿Ö°îµµ °è¼ö¸¦ °í·ÁÇÑ ´Ù¾çÇÑ ÇüÅÂÀÇ µµ½ÃÀ§Ä¡°ø½ÄÀ» Àû¿ëÇϰí, À¯ÀüÀÚ ¾Ë°í¸®ÁòÀ» Àû¿ëÇÏ¿© µµ½ÃÀ§Ä¡°ø½ÄÀÇ ¸Å°³º¯¼ö¸¦ ÃßÁ¤ÇÏ¿´´Ù. À¯µµµÈ µµ½ÃÀ§Ä¡°ø½ÄÀÇ Á¤È®¼ºÀ» ¾Ë¾Æº¸±â À§ÇØ ÀÌ·ÐÀû Ãà¼Òº¯·®°ú ±Ýȸ À¯µµµÈ µµ½ÃÀ§Ä¡°ø½ÄÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ µµ½ÃÀ§Ä¡°ø½Ä¿¡ ÀÇÇØ °è»êµÇ´Â Ãà¼Òº¯·® »çÀÌÀÇ ¿ÀÂ÷¸¦ ºñ±³ÇÏ¿´´Ù. ±× °á°ú, º» ¿¬±¸¿¡¼­ Á¦¾ÈÇÑ µµ½ÃÀ§Ä¡°ø½ÄÀº GEV ºÐÆ÷ÀÇ Çü»ó ¸Å°³º¯¼ö°¡ -0.25~0.10ÀÇ ¹üÀ§¸¦ °¡Áú ¶§ ÀÌ·ÐÀû Ãà¼Òº¯·®°ú °¡Àå ÀÛÀº ¿ÀÂ÷¸¦ º¸ÀÌ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.
Probability plotting position is generally used for the graphical analysis of the annual maximum quantile and the estimation of exceedance probability to display the fitness between sample and an appropriate probability distribution. In addition, it is used to apply a specific goodness of fit test. Plotting position formula to define the probability plotting position has been studied in many researches. Especially, the GEV distribution which is an important probability distribution to analyze the frequency of hydrologic data was popular. In this study, the theoretical reduced variates are derived using the mean value of order statistics to derived an appropriate plotting position formula for the GEV distribution. In addition, various forms of plotting position formula considering various sample sizes and coefficients of skewness related with shape parameters are applied. The parameters of plotting position formulas are estimated using the genetic algorithm. The accuracy of derived plotting position formula is estimated by the errors between the theoretical reduced variates and those by various plotting position formulas including the derived ones in this study. As a result, the errors by derived plotting position formula is the smallest at the range of shape parameter with -0.25~0.10.
 
Ű¿öµå
GEV ºÐÆ÷;µµ½ÃÀ§Ä¡°ø½Ä;¿Ö°îµµ °è¼ö;À¯ÀüÀÚ ¾Ë°í¸®Áò;GEV distribution;plotting position formula;coefficient of skewness;genetic algorithm;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.2, 2011³â, pp.85-96
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201108863881013)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿