¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.2, 2011³â, pp.97-107
Áß±Ô¸ð¼öÄ¡¿¹º¸ÀÚ·áÀÇ Á¤·®Àû °­¼öÃßÁ¤·® °³¼±À» À§ÇÑ Àΰø½Å°æ¸Á±â¹ý
( Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction )
°­ºÎ½Ä;À̺À±â; ´Ü±¹´ëÇб³ °ø°ú´ëÇÐ Åä¸ñȯ°æ°øÇаú;µµÈ­Á¾ÇÕ±â¼ú°ø»ç;
 
ÃÊ ·Ï
¼ö¹®ÇÐÀû ¿¹Ãø¿¡ À־ °­¿ì¼öÄ¡¿¹º¸ÀÇ È°¿ë¼ºÀ» Á¦°íÇϱâ À§ÇÏ¿© Àΰø½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ Á¤·®°­¼ö¿¹Ãø±â¹ýÀ» Á¦½ÃÇÏ¿´´Ù. º» ¿¬±¸¿¡¼­´Â 2001³â 6¿ù°ú 7¿ù, 2002³â 8¿ùÀÇ Áß±Ô¸ð¼öÄ¡¿¹º¸ÀÚ·á¿Í AWSÀÇ 3½Ã°£ ´©Àû°­¼ö, »óÃþ±â»ó°üÃø¼Ò¿¡¼­ÀÇ °¡°­¼ö·®°ú »ó´ë½Àµµ, °¢ ¼±Çà½Ã°£º° °­¼ö¹ß»ýÈ®·üÀ» ÀÌ¿ëÇÏ¿© °¢ ¼±Çà½Ã°£¿¡ µû¸¥ °­¼ö·®À» ¿¹ÃøÇÏ¿´´Ù. °­¼ö´Â ´ë±âº¯¼öÀÇ ¹°¸®Àû ºñ¼±ÇüÁ¶ÇÕÀ¸·Î ¹ß»ýÇϱ⠶§¹®¿¡ °­¼ö¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ´ë±âº¯¼ö¿Í °üÃø°­¼ö»çÀÌÀÇ ºñ¼±Çü°ü°è¸¦ °í·ÁÇϴµ¥ À¯¿ëÇÑ Àΰø½Å°æ¸Á±â¹ýÀ» ÀÌ¿ëÇÏ¿´´Ù. Àΰø½Å°æ¸ÁÀÇ ±¸Á¶´Â Àü¹æÇâ ´ÙÃþÆÛ¼ÁÆ®·Ð(feedforward multi-layer perceptron)À»¼±ÅÃÇÏ¿´À¸¸ç, ½Å°æ¸ÁÀÇ ÇнÀ ½Ã À½ÀÇ °­¼ö¸ðÀǰªÀ» °í·ÁÇÏ¿© ¹«°­¼ö·ÎÀüȯÇϱâ À§ÇÏ¿© ºñ¼±Çü ¾ç±ØÈ°¼ºÈ­ÇÔ¼ö¸¦ »ç¿ëÇÏ¿´´Ù. Áß±Ô¸ð¼öÄ¡¿¹º¸¸ðÇü°ú Àΰø½Å°æ¸Á¿¡¼­ ¿¹ÃøµÈ °­¼ö·®Àº Nash-Sutcliffe Coefficient of Efficiency (NS-COE)¿Í Coefficient of Correlation (CORR)·Î ¼±Çà½Ã°£º°·Î Åë°èºÐ¼®À» ½Ç½ÃÇÏ¿´´Ù. 3½Ã°£ ´©Àû°­¼ö¸¦ ±âÁØÀ¸·Î NS´Â Çѹݵµ¿µ¿ª¿¡¼­ Æò±ÕÀûÀ¸·Î ¼±Çà½Ã°£ÀÌ 12 hrÀÎ °æ¿ì -0.04¿¡¼­ 0.31·Î, ¼±Çà½Ã°£ÀÌ 24 hrÀÎ °æ¿ì -0.04¿¡¼­ 0.38·Î, ¼±Çà½Ã°£ÀÌ 36 hrÀÎ °æ¿ì -0.03¿¡¼­ 0.33À¸·Î, ¼±Çà½Ã°£ÀÌ 48 hrÀÎ °æ¿ì -0.05¿¡¼­ 0.27·Î Áõ°¡ÇÏ¿©, °­¼ö¿¹ÃøÀÇ Á¤È®µµ°¡ Çâ»óµÊÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.
For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.
 
Ű¿öµå
Á¤·®Àû°­¼ö¿¹Ãø;Áß±Ô¸ð¼öÄ¡¿¹º¸ÀÚ·á;Àΰø½Å°æ¸Á;quantitative precipitation prediction;meso-scale numerical weather prediction;artificial neural network;COE;CORR;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.2, 2011³â, pp.97-107
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201108863881015)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿