¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.3, 2011³â, pp.199-208
Àڷᵿȭ ±â¹ýÀ» ¿¬°èÇÑ ½Ç½Ã°£ ÇÏõÀ¯·® ¿¹Ãø¸ðÇü °³¹ß
( Development of Real-Time River Flow Forecasting Model with Data Assimilation Technique )
À̺´ÁÖ;¹è´öÈ¿; ±¹¸³±â»ó¿¬±¸¼Ò ÀÀ¿ë±â»ó¿¬±¸°ú ¼ö¹®ÀÚ¿ø¿¬±¸ÆÀ;¼¼Á¾´ëÇб³ ¹°ÀÚ¿ø¿¬±¸¼Ò.Åä¸ñȯ°æ°øÇаú;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â ¿¬¼ÓÇü °­¿ì-À¯Ãâ¸ðÇü°ú ¾Ó»óºí Ä®¸¸ ÇÊÅÍ ±â¹ýÀ» ¿¬°èÇÏ¿© ½Ç½Ã°£ ÇÏõÀ¯·® ¿¹Ãø¸ðÇüÀ» °³¹ßÇϰí Àڷᵿȭ·Î ÀÎÇÑ Á¤È®µµ °³¼± Á¤µµ¸¦ Æò°¡ÇϰíÀÚ ÇÑ´Ù. ´ë»óÀ¯¿ªÀº ¾Èµ¿´ï »ó·ùÀ¯¿ªÀ» ¼±Á¤Çϰí 2006.7.1~8.18°ú 2007.8.1~9.30ÀÇ È«¼ö±â°£¿¡ ´ëÇØ Æò°¡¸¦ ¼öÇàÇÏ¿´´Ù. Àڷᵿȭ¸¦ À§ÇÑ ¸ðÇü »óꝼö´Â À¯¿ªÀÇ Åä¾ç¼öºÐ°ú Àú·ù·® ¹× Çϵµ Àú·ù·®À» ¼±Á¤ÇÏ¿´À¸¸ç ÇÏ·ù ´ï ÁöÁ¡ÀÇ °üÃøÀ¯·®À» ÀÌ¿ëÇÏ¿© »óꝼö¸¦ °»½ÅÇϵµ·Ï ¸ðÇüÀ» ¼³°èÇÏ¿´´Ù. »óꝼöÀÇ Ä®¸¸°ÔÀÎ °Åµ¿À» ºÐ¼®ÇÑ °á°ú ¸ðÀÇÀ¯·®Àº °üÃøÀ¯·®À¸·Î 74% À̵¿ÇÑ °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ¿¹Ãø°­¿ì¸¦ °üÃø°­¿ì¿Í µ¿ÀÏÇÏ´Ù°í °¡Á¤ÇÏ°í ¿¹Ãø¼±Çà½Ã°£ 1½Ã°£¿¡ ´ëÇØ Àڷᵿȭ Àü ÈÄÀÇ ¸ðÀÇÀ¯·®À» ºÐ¼®ÇÑ °á°ú 2006³â°ú 2007³â¿¡ °¢°¢ 49.6%¿Í 33.1%ÀÇ Á¤È®µµ°¡ Çâ»óµÊÀ» È®ÀÎÇÏ¿´´Ù. ÀÌ»óÀÇ °á°ú·ÎºÎÅÍ ½Ç½Ã°£ ÇÏõÀ¯·® ¿¹Ãø½Ã½ºÅÛ¿¡ Àڷᵿȭ±â¹ýÀ» ¿¬°èÇÒ °æ¿ì °­¿ì-À¯Ãâ¸ðÇü¸¸À» ÀÌ¿ëÇÑ °á°úº¸´Ù Á¤È®ÇÑ È«¼ö·® ¿¹ÃøÀÌ °¡´ÉÇÒ °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
The objective of this study is to develop real-time river flow forecast model by linking continuous rainfall-runoff model with ensemble Kalman filter technique. Andong dam basin is selected as study area and the model performance is evaluated for two periods, 2006. 7.1~8.18 and 2007. 8.1~9.30. The model state variables for data assimilation are defined as soil water content, basin storage and channel storage. This model is designed so as to be updated the state variables using measured inflow data at Andong dam. The analysing result from the behavior of the state variables, predicted state variable as simulated discharge is updated 74% toward measured one. Under the condition of assuming that the forecasted rainfall is equal to the measured one, the model accuracy with and without data assimilation is analyzed. The model performance of the former is better than that of the latter as much as 49.6% and 33.1% for 1 h-lead time during the evaluation period, 2006 and 2007. The real-time river flow forecast model using rainfall-runoff model linking with data assimilation process can show better forecasting result than the existing methods using rainfall-runoff model only in view of the results so far achieved.
 
Ű¿öµå
¿¬¼ÓÇü °­¿ì-À¯Ãâ¸ðÇü;¾Ó»óºí Ä®¸¸ ÇÊÅÍ;½Ç½Ã°£ ÇÏõÀ¯·®¿¹Ãø;Àڷᵿȭ;continuous rainfall-runoff model;ensemble Kalman filter;real-time river flow forecast;data assimilation;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.3, 2011³â, pp.199-208
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201115952331152)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿