¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.5, 2011³â, pp.363-376
1Â÷¿ø ¼öÄ¡¸ðÇüÀÇ °¡º¯ °è»ê°Å¸®°£°Ý ÃßÁ¤ ±â¹ý
( Estimation Technique of Computationally Variable Distance Step in 1-D Numerical Model )
±è±Ø¼ö;±èÁö¼º;±è¿ø; Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ÇÏõ.ÇØ¾ÈÇ׸¸¿¬±¸½Ç;Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ÇÏõ.ÇØ¾ÈÇ׸¸¿¬±¸½Ç;Çѱ¹°Ç¼³±â¼ú¿¬±¸¿ø ÇÏõ.ÇØ¾ÈÇ׸¸¿¬±¸½Ç;
 
ÃÊ ·Ï
ÇÏõ È«¼öÇØ¼® ºÐ¾ß¿¡¼­ °¡Àå ³Î¸® ÀÌ¿ëµÇ°í ÀÖ´Â 1Â÷¿ø µ¿¼ö¿ªÇÐ ¼öÄ¡¸ðÇüÀÇ ÀÔ·ÂÀÚ·á´Â »óÇÏ·ù´Ü °æ°èÁ¶°Ç, Á¶µµ°è¼ö, Çϵµ´Ü¸é µîÀ̸ç, °è»ê ½Ã°£°£°Ý ¹× °Å¸®°£°ÝÀÇ ¼±Á¤Àº °è»ê°á°úÀÇ Á¤È®¼º, ¾ÈÁ¤¼º, È¿À²¼º È®º¸¸¦ À§ÇÑ ÇÙ½É ¿ä¼ÒÀÌ´Ù. º» ¿¬±¸¿¡¼­´Â ±âÁ¸ ´Ü¸é°£°Ý ¼±Á¤±â¹ýÀÇ ÀÌ·ÐÀû ¹è°æÀ» °ËÅäÇÏ¿´°í, ¸Å ½Ã°£´Ü°èº°·Î µµÃâµÇ´Â È帧Ư¼ºÀ» ¹Ý¿µÇÏ¿© °è»ê°Å¸®°£°ÝÀ» ÃßÁ¤ÇÏ´Â °¡º¯ °è»ê°Å¸®°£°Ý ÃßÁ¤ ±â¹ýÀ» Á¦¾ÈÇÏ¿´´Ù. Á¦¾ÈµÈ ±â¹ýÀ» 1Â÷¿ø ºÎÁ¤·ù ¼öÄ¡¸ðÇü°ú ¿¬°èÇÏ¿© Teton ´ï ºØ±« ¹× ÇѰ­ È«¼ö »ç»ó¿¡ ´ëÇØ Àû¿ëÇÔÀ¸·Î½á ±âÁ¸ °íÁ¤ °è»ê°Å¸®°£°Ý ÃßÁ¤ ±â¹ý¿¡ ÀÇÇÑ ÇØ¼®°á°ú¿Í ºñ±³ÇÏ¿´´Ù. ´õ ¸¹Àº ³»»ð´Ü¸éÀÌ »ç¿ëµÉ °æ¿ì, ¼öÄ¡ ¼ö·Å¼º ½ÇÇè °á°ú´Â ¼öÄ¡ÇØÀÇ Á¤È®¼º°ú ¾ÈÁ¤¼ºÀÌ ³ô¾ÆÁüÀ» ³ªÅ¸³»¾ú°í, º» ¿¬±¸¿¡¼­ Á¦¾ÈµÈ ±â¹ýÀº ±âÁ¸ °íÁ¤ °è»ê°Å¸®°£°Ý ÃßÁ¤±â¹ýº¸´Ù ÀûÀº ´Ü¸é°³¼ö·Î µ¿ÀÏÇÑ Á¤µµÀÇ Á¤È®µµ¸¦ ³ªÅ¸³¿À¸·Î½á °è»ê È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×´Ù. º» ¿¬±¸¿¡¼­ °³¹ßµÈ ±â¹ýÀÇ ½Ç¹«Àû¿ëÀ» ÅëÇØ Á¤È®¼º°ú ¾ÈÁ¤¼º»Ó¸¸ ¾Æ´Ï¶ó ³ôÀº È¿À²¼ºÀ» °®´Â ÇÏõ È«¼öÇØ¼®ÀÌ °¡´ÉÇÒ °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
1-D hydrodynamic numerical models have been most widely used in the field of flood analysis. The model's input data are upstream/downstream boundaries, roughness coefficients, cross-sections, and so on, and computational distance step and time step are the most important factors in order to guarantee the computational accuracy, stability, and efficiency. In this study, a theoretical explanation is presented for the basis of the previous empirical selection criteria of cross-section's location; also, the estimation technique of computationally variable distance step is proposed to reflect the properties of flow at every computational time step. Combining this technique with 1-D unsteady numerical model, it was applied to two events of Teton dam failure flood and the Han River flood. The numerical experimental results demonstrate that the accuracy and stability is increased when used more interpolated cross-sections and show that the proposed technique of computationally variable distance step has the same order of accuracy with smaller numbers of cross-section than previous empirical selection criteria. The practical use of this technique will be possible to analyze the river floods with high efficiency as well as accuracy and stability.
 
Ű¿öµå
°è»ê°Å¸®°£°Ý;1Â÷¿ø ¼öÄ¡¸ðÇü;¼öÄ¡¾ÈÁ¤¼º;Á¤È®¼º;È¿À²¼º;computational distance step;1-D numerical model;numerical stability;accuracy;efficiency;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.5, 2011³â, pp.363-376
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201118834665899)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿