¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.7, 2011³â, pp.537-551
Takagi-Sugeno Ã߷бâ¹ý°ú ½Å°æ¸ÁÀ» ¿¬°èÇÑ ´º·Î-ÆÛÁö È«¼ö¿¹Ãø ¸ðÇüÀÇ ±¸Ãà ¹× Àû¿ë (II) : ½ÇÁ¦ À¯¿ª¿¡ ´ëÇÑ Àû¿ë ¹× °ËÁõ
( Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification )
Ãֽ¿ë;ÇѰǿ¬; ±¹¸³¹æÀ翬±¸¼Ò;°æºÏ´ëÇб³ °ø°ú´ëÇÐ °ÇÃà.Åä¸ñ°øÇкÎ;
 
ÃÊ ·Ï
º» ¿¬±¸¿¡¼­´Â ¾Õ¼± ¿¬±¸¸¦ ÅëÇØ ¼±Á¤µÈ ÃÖÀû ÀÔ·Â ÀÚ·á Á¶ÇÕÀ» ÀÌ¿ëÇÏ¿© ÇѰ­¼ö°èÀÇ ¿Õ¼÷õ°ú ±Ý°­À¯¿ªÀÇ °©Ãµ¿¡ ´ëÇÑ Takagi-Sugeno ÆÛÁö±â¹ý°ú ½Å°æ¸ÁÀ» ¿¬°èÇÑ ´º·Î-ÆÛÁö È«¼ö¿¹Ãø ¸ðÇüÀ» ±¸ÃàÇÏ¿´´Ù. ±¸ÃàµÈ ´º·Î-ÆÛÁö È«¼ö¿¹Ãø ¸ðÇüÀ» ÇѰ­¼ö°èÀÇ ¿Õ¼÷õ°ú ±Ý°­À¯¿ªÀÇ °©Ãµ¿¡ Àû¿ëÇÏ¿© 30ºÐ, 60ºÐ, 90ºÐ, 120ºÐ, 150ºÐ, 180ºÐÀÇ ¼±Çà½Ã°£¿¡ ´ëÇØ °¢°¢ È«¼ö¿¹ÃøÀ» ¼öÇàÇÏ¿´´Ù. ¼±Çà½Ã°£º° ¿¹Ãø¼öÀ§¸¦ °üÃø¼öÀ§¿Í ºñ±³ÇÑ °á°ú ¾ÈÁ¤µÇ°í Á¤È®µµ ³ôÀº È«¼ö¿¹ÃøÀ» ÇÏ´Â °ÍÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. Ãß°¡ÀûÀ¸·Î Á¤·®Àû Æò°¡¸¦ À§ÇØ Æò±ÕÁ¦°ö±Ù ¿ÀÂ÷(Root Mean Square Error)¿Í °°Àº Åë°èÁöÇ¥¸¦ »êÁ¤ÇÏ¿© ¸ðÇüÀÇ Àû¿ë¼ºÀ» °ËÁõÇÏ¿´´Ù. °ËÁõ °á°ú ¸ðµç Åë°èÁöÇ¥¿¡¼­ Å« ¿ÀÂ÷ ¾øÀÌ ¼º°øÀûÀ¸·Î È«¼ö¿¹ÃøÀÌ ¸ðÀǵÊÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. º» ¿¬±¸°á°ú´Â ÇâÈÄ Áß¼ÒÇÏõ¿¡¼­ ÃæºÐÇÑ ¼±Çà½Ã°£À» È®º¸ÇÑ Á¤È®µµ ³ôÀº È«¼öÁ¤º¸½Ã½ºÅÛÀÇ ±¸Ãà¿¡ Ȱ¿ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.
 
Ű¿öµå
È«¼ö¿¹Ãø;´º·Î-ÆÛÁö È«¼ö¿¹Ãø ¸ðÇü;Takagi-Sugeno ÆÛÁö Ãß·Ð;½Å°æ¸Á;Flood forecasting;Neuro-Fuzzy flood forecasting model;Takagi-Sugeno fuzzy inference;Neural network;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.7, 2011³â, pp.537-551
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201123163434088)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿